Daring move for first US-China fusion team

November 11, 2015

The way to increase the power and efficiency of magnetic fusion energy may be to risk running the plasma - hotter than 100-million-degrees C - closer than ever to the wall, according to new experimental results achieved by the first U.S.-China fusion research team.

The way to increase the power and efficiency of magnetic fusion energy may be to risk running the plasma - hotter than 100-million-degrees C - closer than ever to the wall, according to new experimental results achieved by the first U.S.-China fusion research team.

The team is led by Dr. Xianzu Gong of ASIPP and Dr. Andrea Garofalo of General Atomics (GA) in San Diego. Using both China's EAST facility and the DIII-D National Fusion Facility, operated by GA for the U.S. Department of Energy, the team has investigated the "high-bootstrap current" scenario, which enhances self-generated ("bootstrap") electrical current to find an optimal tokamak configuration for fusion energy production.

Magnetic fusion energy research uses magnetic fields to confine plasma (ionized gas) heated to temperatures hotter than the Sun's core. This enables the ions to fuse and release excess energy that can be turned into electricity, harnessing the Sun's power on Earth. The most developed configuration is the tokamak, and the team's work helps prepare for the 500-megawatt ITER fusion research facility that is currently being built in France by a consortium of 35 nations, including China and the U.S.

This joint U.S.-China experiment directly demonstrates the stabilizing effect of reducing the plasma-wall distance in tokamaks with high plasma pressure and large bootstrap current fraction, according to Dr. Gong, who said, "I think, in simple terms, these experiments may provide better physics and operation foundation for ITER plasmas."

The focus was on resolving the "kink mode" instability, a wobbling effect that reduces performance, by moving the plasma closer to the vessel's wall, Dr. Garofalo explained . Operating closer to the wall suppresses the kink mode and enables higher pressure inside the tokamak, the toroidal or doughnut-shaped steel-lined fusion device. This gives rise to "pressure-driven" plasma flows that maintain the confinement quality even with lower external injection of velocity.

"This is unlike any other regime," said Dr. Garofalo. "It's very risky to move the plasma that close to the wall. The chief operator said 'You can't do that anymore, you're going to damage the machine,' so it was a struggle to prove our theory was correct."

The gambit paid off. Moving the plasma closer to the wall removed the kink mode and enabled higher plasma pressure, which, in turn, makes the plasma less dependent on externally injected flow. This is important because in a tokamak reactor, such as ITER, it is very difficult and expensive to drive a rapid plasma flow with external means.

The team performed the most recent bootstrap exploration in DIII-D, following-up work on the record-setting milestone achieved at China's EAST tokamak, where GA scientists have also been collaborating. An ASIPP scientist Dr. Qilong Ren will deliver the invited talk on the topic of Magnetic Confinement-Experiments.

While fusion has been in the public domain since the 1950s and its advances have been achieved by teams around the world, this U.S.-China team is setting new milestones in global cooperation. For realization of magnetic fusion energy, global cooperation is needed, said Dr. Gong of ASIPP, who cited the EAST/DIII-D partnership as "an efficient and effective new model" for international science collaborations that benefits both partners and the field of study.

"We have made a very good start of international collaboration in fusion research between China and the U.S., and we are very proud to be a pioneer in this field," said Dr. Gong.
-end-
Contact: Dr. Xianzu Gong, ASIPP, xz_gong@ipp.ac.cn
Dr. Andrea Garofalo, DIII-D, General Atomics (858) 455-2123, garofalo@fusion.gat.com
Dr. Qilong Ren, Institute of Plasma Physics Chinese Academy of Sciences, renql@ipp.ac.cn

Abstracts: KI2.00004 Progress Toward Steady State Tokamak Operation: Exploiting the high bootstrap current fraction regime
Session Session KI2: MFE Regime Optimization
3:00 PM-5:00 PM, Tuesday, November 17, 2015
Room: Chatham Ballroom C

Session: KI2.00004 "Progress Toward Steady State Tokamak Operation: Exploiting the high bootstrap current fraction regime." Chatham Ballroom C

American Physical Society

Related Plasma Articles from Brightsurf:

Plasma treatments quickly kill coronavirus on surfaces
Researchers from UCLA believe using plasma could promise a significant breakthrough in the fight against the spread of COVID-19.

Fighting pandemics with plasma
Scientists have long known that ionized gases can kill pathogenic bacteria, viruses, and some fungi.

Topological waves may help in understanding plasma systems
A research team has predicted the presence of 'topologically protected' electromagnetic waves that propagate on the surface of plasmas, which may help in designing new plasma systems like fusion reactors.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Plasma-driven biocatalysis
Compared with traditional chemical methods, enzyme catalysis has numerous advantages.

How bacteria protect themselves from plasma treatment
Considering the ever-growing percentage of bacteria that are resistant to antibiotics, interest in medical use of plasma is increasing.

A breakthrough in the study of laser/plasma interactions
Researchers from Lawrence Berkeley National Laboratory and CEA Saclay have developed a particle-in-cell simulation tool that is enabling cutting-edge simulations of laser/plasma coupling mechanisms.

Researchers turn liquid metal into a plasma
For the first time, researchers at the University of Rochester's Laboratory for Laser Energetics (LLE) have found a way to turn a liquid metal into a plasma and to observe the temperature where a liquid under high-density conditions crosses over to a plasma state.

How black holes power plasma jets
Cosmic robbery powers the jets streaming from a black hole, new simulations reveal.

Give it the plasma treatment: strong adhesion without adhesives
A Japanese research team at Osaka University used plasma treatment to make fluoropolymers and silicone resin adhere without any adhesives.

Read More: Plasma News and Plasma Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.