Nav: Home

Prey-size plastics are invading larval fish nurseries

November 11, 2019

A new research study has revealed that larval fish species from various ocean habitats are now being threatened by plastic pollution that infects their nursery habitats---at levels on average, eight times higher than those recently found in the Great Pacific Garbage Patch.

The study is also the first to show that larval coral reef fish and pelagic species consume plastic, as early as just a few days after they're born. While scientists had known that adult fish consume plastic, until now, it was not known if larval fish also do so, nor the health implications.

The study was published in the journal Proceedings of the National Academy of Sciences.

Researchers at Arizona State University's Center for Global Discovery and Conservation Science (GDCS) worked alongside an international team of scientists from NOAA's Pacific Islands Fisheries Science Center to conduct one of the most ambitious research studies to date.

To perform their work, the research team used a combination of advanced remote sensing techniques, field-based plankton tow surveys and fish dissection to observe the impact of plastics on the larval fish. They conducted the research along a pristine area along the west coast of Hawai'i Island, the southeasternmost island in the Hawaiian Archipelago.

They explored a prominent feature of these coastal waters called surface slicks, which are naturally occurring, ribbon-like, smooth water features at the ocean surface.

The locations of the surface slicks were identified by an advanced remote sensing technique pioneered by researchers at GDCS. This technique involved using more than 100 shoebox-sized satellites, built and operated by partner Planet to discern textural sea surface differences between surface slicks and regular seawater. "Surface slicks had never been mapped before, but we knew it would be vital to scaling up the field-based study. Our new method developed for this study can be applied anywhere in the world," noted co-author Dr. Greg Asner, director of GDCS.

Surface slicks act as nursery habitats for larval fish because they contain a rich and steady diet of planktonic organisms. "Slick nurseries also concentrate lots of planktonic prey, and thereby provide an oasis of food that is critical for larval fish development and survival," said Jonathan Whitney, a marine ecologist for the Joint Institute for Marine and Atmospheric Research and NOAA, and co-leader of the study.

NOAA researchers used tow surveys to collect planktonic organisms, larval fish and plastic pieces by using a straight-conical ring net towed behind a small boat. After the organisms and plastics were identified, the researchers then dissected the larval fish to analyze what they ingested.

"We found tiny plastic pieces in the stomachs of commercially targeted pelagic species, including swordfish and mahi-mahi, as well as in coral reef species like triggerfish," said Whitney. Plastics were also found in the stomachs of flying fish, a vital food source for apex predators like tunas and Hawaiian seabirds.

The team also found that larval fish found in surface slicks were larger, more well-developed, and better swimmers compared to other fish. Larval fish that actively swim can better orient with their environment, and this suggests that tropical larval fish could be actively seeking surface slicks for their concentrated prey resources.

Another important finding was that the same ocean processes that accumulate prey in surface slicks also concentrate buoyant plastics that threaten aquatic ecosystems.

The researchers found that surface slicks comprise less than 10% of ocean surface habitat but are estimated to contain 42.3% of all surface-dwelling larval fish and 91.8% of all floating plastics.

In fact, the surface slicks contained seven times more plastics than larval fish with densities, on average, eight times higher than those recently found in the Great Pacific Garbage Patch. In comparison to neighboring surface water just a couple hundred yards away, plastics were 126 times more concentrated in the surface slicks.

"The surface slicks we mapped have turned out to be like fish superhighways that connect different bays and reefs along the west coast of Hawaii Island," commented Asner. "This is how reef fish get around over long distances, and that has enormous implications for reef management since a change in fisheries activity in one bay can have an impact on more distant bays down the superhighway. Unfortunately, now we can also say these surface slicks are plastic superhighways."

Researchers are still uncertain as to whether plastic ingestion is harmful to larval fish. In adult fish, plastics can cause gut blockage, malnutrition, and toxicant accumulation. Likewise, larval fish are highly sensitive to changes in their environment and food, so prey-size plastics could impact their development and reduce their chances of survival.

"Larval fish are foundational for ecosystem function and represent the future cohorts of adult fish populations," noted Jamison Gove, an adjunct faculty at GDCS, research oceanographer for NOAA, and co-lead of the study. "The fact that larval fish are surrounded by and ingesting non-nutritious toxin-laden plastics, at their most vulnerable life-history stage, is cause for alarm."
-end-


Arizona State University, Center for Global Discovery and Conservation Science

Related Plastics Articles:

Plastics, waste and recycling: It's not just a packaging problem
Discussions of the growing plastic waste problem often focus on reducing the volume of single-use plastic packaging items such as bags, bottles, tubs and films.
'Critical' questions over disease risks from ocean plastics
Key knowledge gaps exist in our understanding of how ocean microplastics transport bacteria and viruses -- and whether this affects the health of humans and animals, researchers say.
Plastics, pathogens and baby formula: What's in your shellfish?
The first landmark study using next-generation technology to comprehensively examine contaminants in oysters in Myanmar reveals alarming findings: the widespread presence of human bacterial pathogens and human-derived microdebris materials, including plastics, kerosene, paint, talc and milk supplement powders.
Chemists make tough plastics recyclable
MIT chemists have developed a way to modify thermoset plastics with a chemical linker that makes it much easier to recycle them, but still allows them to retain their mechanical strength.
The many lifetimes of plastics
Many of us have seen informational posters at parks or aquariums specifying how long plastics bags, bottles, and other products last in the environment.
Recycling plastics together, simple and fast
Scientists successfully blended different types of plastics to be recycled together, providing a solution to the environmental problem of plastic waste and adding economic value to plastic materials.
Water replaces toxins: Green production of plastics
A new way to synthesize polymers, called hydrothermal synthesis, can be used to produce important high-performance materials in a way which is much better for the environment.
Untwisting plastics for charging internet-of-things devices
Scientists are unraveling the properties of electricity-conducting plastics so they can be used in future energy-harvesting devices.
Scientists predict the size of plastics animals can eat
A team of scientists at Cardiff University has, for the first time, developed a way of predicting the size of plastics different animals are likely to ingest.
Invisible plastics in water
A Washington State University research team has found that nanoscale particles of the most commonly used plastics tend to move through the water supply, especially in fresh water, or settle out in wastewater treatment plants, where they end up as sludge, in landfills, and often as fertilizer.
More Plastics News and Plastics Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.