Nav: Home

Prey-size plastics are invading larval fish nurseries

November 11, 2019

A new research study has revealed that larval fish species from various ocean habitats are now being threatened by plastic pollution that infects their nursery habitats---at levels on average, eight times higher than those recently found in the Great Pacific Garbage Patch.

The study is also the first to show that larval coral reef fish and pelagic species consume plastic, as early as just a few days after they're born. While scientists had known that adult fish consume plastic, until now, it was not known if larval fish also do so, nor the health implications.

The study was published in the journal Proceedings of the National Academy of Sciences.

Researchers at Arizona State University's Center for Global Discovery and Conservation Science (GDCS) worked alongside an international team of scientists from NOAA's Pacific Islands Fisheries Science Center to conduct one of the most ambitious research studies to date.

To perform their work, the research team used a combination of advanced remote sensing techniques, field-based plankton tow surveys and fish dissection to observe the impact of plastics on the larval fish. They conducted the research along a pristine area along the west coast of Hawai'i Island, the southeasternmost island in the Hawaiian Archipelago.

They explored a prominent feature of these coastal waters called surface slicks, which are naturally occurring, ribbon-like, smooth water features at the ocean surface.

The locations of the surface slicks were identified by an advanced remote sensing technique pioneered by researchers at GDCS. This technique involved using more than 100 shoebox-sized satellites, built and operated by partner Planet to discern textural sea surface differences between surface slicks and regular seawater. "Surface slicks had never been mapped before, but we knew it would be vital to scaling up the field-based study. Our new method developed for this study can be applied anywhere in the world," noted co-author Dr. Greg Asner, director of GDCS.

Surface slicks act as nursery habitats for larval fish because they contain a rich and steady diet of planktonic organisms. "Slick nurseries also concentrate lots of planktonic prey, and thereby provide an oasis of food that is critical for larval fish development and survival," said Jonathan Whitney, a marine ecologist for the Joint Institute for Marine and Atmospheric Research and NOAA, and co-leader of the study.

NOAA researchers used tow surveys to collect planktonic organisms, larval fish and plastic pieces by using a straight-conical ring net towed behind a small boat. After the organisms and plastics were identified, the researchers then dissected the larval fish to analyze what they ingested.

"We found tiny plastic pieces in the stomachs of commercially targeted pelagic species, including swordfish and mahi-mahi, as well as in coral reef species like triggerfish," said Whitney. Plastics were also found in the stomachs of flying fish, a vital food source for apex predators like tunas and Hawaiian seabirds.

The team also found that larval fish found in surface slicks were larger, more well-developed, and better swimmers compared to other fish. Larval fish that actively swim can better orient with their environment, and this suggests that tropical larval fish could be actively seeking surface slicks for their concentrated prey resources.

Another important finding was that the same ocean processes that accumulate prey in surface slicks also concentrate buoyant plastics that threaten aquatic ecosystems.

The researchers found that surface slicks comprise less than 10% of ocean surface habitat but are estimated to contain 42.3% of all surface-dwelling larval fish and 91.8% of all floating plastics.

In fact, the surface slicks contained seven times more plastics than larval fish with densities, on average, eight times higher than those recently found in the Great Pacific Garbage Patch. In comparison to neighboring surface water just a couple hundred yards away, plastics were 126 times more concentrated in the surface slicks.

"The surface slicks we mapped have turned out to be like fish superhighways that connect different bays and reefs along the west coast of Hawaii Island," commented Asner. "This is how reef fish get around over long distances, and that has enormous implications for reef management since a change in fisheries activity in one bay can have an impact on more distant bays down the superhighway. Unfortunately, now we can also say these surface slicks are plastic superhighways."

Researchers are still uncertain as to whether plastic ingestion is harmful to larval fish. In adult fish, plastics can cause gut blockage, malnutrition, and toxicant accumulation. Likewise, larval fish are highly sensitive to changes in their environment and food, so prey-size plastics could impact their development and reduce their chances of survival.

"Larval fish are foundational for ecosystem function and represent the future cohorts of adult fish populations," noted Jamison Gove, an adjunct faculty at GDCS, research oceanographer for NOAA, and co-lead of the study. "The fact that larval fish are surrounded by and ingesting non-nutritious toxin-laden plastics, at their most vulnerable life-history stage, is cause for alarm."
-end-


Arizona State University, Center for Global Discovery and Conservation Science

Related Plastics Articles:

Prey-size plastics are invading larval fish nurseries
A new study by researchers at Arizona State University's Center for Global Discovery and Conservation Science (GDCS) and NOAA's Pacific Islands Fisheries Science Center has revealed that larval fish species from various ocean habitats are now being threatened by plastic pollution that infects their nursery habitats---at levels on average, eight times higher than those recently found in the Great Pacific Garbage Patch.
Simulated sunlight reveals how 98% of plastics at sea go missing each year
A new study helps to solve the mystery of missing plastic fragments at sea.
3D-printed plastics with high performance electrical circuits
Rutgers engineers have embedded high performance electrical circuits inside 3D-printed plastics, which could lead to smaller and versatile drones and better-performing small satellites, biomedical implants and smart structures.
Complexity of plastics make it impossible to know which are dangerous
A recent study found that 3 out of 4 plastic consumer products contain harmful chemicals.
Plastics, fuels and chemical feedstocks from CO2? They're working on it
Four SUNCAT scientists describe recent research results related to the quest to capture CO2 from the smokestacks of factories and power plants and use renewable energy to turn it into industrial feedstocks and fuels.
Seabirds are threatened by hazardous chemicals in plastics
An international collaboration led by scientists at Tokyo University of Agriculture and Technology (TUAT) , Japan, has found that hazardous chemicals were detected in plastics eaten by seabirds.
Research shows black plastics could create renewable energy
New study looks at how plastics can be recycled and could help reduce plastic waste.
Squid could provide an eco-friendly alternative to plastics
The remarkable properties of a recently-discovered squid protein could revolutionize materials in a way that would be unattainable with conventional plastic.
Scientists discover a better way to make plastics out of sulfur
Scientists at the University of Liverpool have discovered a new process to make polymers out of sulfur which could provide a way of making plastic that is less harmful to the environment.
Improved plastics recycling thanks to spectral imaging
Plastics recycling is complicated by the need to recycle similar plastics together.
More Plastics News and Plastics Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab