New understanding of antibiotic synthesis

November 11, 2019

Researchers at McGill University's Faculty of Medicine have made important strides in understanding the functioning of enzymes that play an integral role in the production of antibiotics and other therapeutics. Their findings are published in Science.

"Many of the medicines that we rely on today are natural products, made by the Earth's flora," explains Dr. Martin Schmeing, Associate Professor in the Department of Biochemistry at McGill and the study's senior author. "This includes compounds made in microbes by massive enzymes called nonribosomal peptide synthetases, or NRPSs. NRPSs synthesize all sorts of antibiotics, which can kill dangerous fungi and bacteria, as well as compounds to help us fight off viral infections and cancers. For example, these compounds include viomycin, an antibiotic used for the treatment of multidrug-resistant tuberculosis; cyclosporin, which has been widely used as an immunosuppressant in organ transplants; and the familiar antibiotic penicillin."

In order to synthesize these drugs, NRPSs operate similar to a factory assembly line, consisting of a series of workstations. Each station, called a "module", has multi-step workflows and moving parts that allow it to add one building block component to the growing drug.

Understanding the assembly line's inner workings

Previous work by Dr. Schmeing and others has led to a solid understanding of how one module works. Now, using a technique called X-ray crystallography at the Canadian Light Source in Saskatchewan, and the Advanced Photon Source in Illinois, the team was able to take ultra-high resolution 3D pictures of the NRPSs.

For the first time, they were able to make high quality observations about how an individual module relates to the bigger assembly line, by visualizing a two-module portion of the NRPSs that makes the antibiotic linear gramicidin (found in Polysporin treatments). The study found a surprising lack of synchronisation between modules at all points other than when they must coordinate to pass the intermediate from one workstation to the next. Additionally, they found that the modules don't line up in a straight line or other organized fashion, but instead can line up in many different relative positions. "This level of massive flexibility was not expected," notes Dr. Schmeing, who is also Director of McGill's Centre for Structural Biology. "The enzymes are performing gymnastics."

Because the proteins are trapped in a crystal, care was taken to confirm that the results were representative of what happens in real life. Dr. Schmeing worked with his colleague, Dr. Alba Guarné, Professor in the Department of Biochemistry at McGill, to use complementary solution data, collected at the Advanced Light Source in Berkeley to validate the observations. "The structural biology community is very strong at McGill. We work together to help each other in collaborations, to obtain the biophysical equipment required for cutting-edge experiments, and to train our students" says Dr. Schmeing, noting that the experimentalists on the paper, Janice Reimer, Max Eivanskhani and Ingrid Harb, are all talented McGill graduate students. "The environment and colleagues at the McGill Centre for Structural Biology are important for the continued success of our labs."

Future implications for therapeutic design

The results could have implications for the production of new antibiotics and therapeutics in the long term. Since they were first discovered, scientists have been excited about the possibility of bioengineering NRPSs by mixing and matching workstations to produce designer compounds. "Our study shows that it should be possible to mix and match these modules, but that the bioengineered NRPSs must be modified at the points involved in passing the compound from one module to the next to get them to work well," explains Dr. Schmeing. "This is something we teamed up with Martin Weigt from the Sorbonne to do as a proof of principle in the paper, but which will need to be optimized for production of designer therapeutics."
"Structures of a dimodular nonribosomal peptide synthetase reveal conformational flexibility," by Reimer, J. M., Eivanskhani, M, Harb, I., Guarne, A, Weigt, M., Schmeing, T. M. was published in the journal Science on November 8, 2019. Doi:10.1126/science.aaw4388

McGill University

Related Antibiotics Articles from Brightsurf:

Insights in the search for new antibiotics
A collaborative research team from the University of Oklahoma, the Memorial Sloan Kettering Cancer Center and Merck & Co. published an opinion article in the journal, Nature Chemical Biology, that addresses the gap in the discovery of new antibiotics.

New tricks for old antibiotics
The study published in the journal Immunity reveals that tetracyclines (broad spectre antibiotics), by partially inhibiting cell mitochondria activity, induce a compensatory response on the organism that decreases tissue damage caused during infection.

Benefits, risks seen with antibiotics-first for appendicitis
Antibiotics are a good choice for some patients with appendicitis but not all, according to study results published today in the New England Journal of Medicine.

How antibiotics interact
Understanding bottleneck effects in the translation of bacterial proteins can lead to a more effective combination of antibiotics / study in 'Nature Communications'

Are antivitamins the new antibiotics?
Antibiotics are among the most important discoveries of modern medicine and have saved millions of lives since the discovery of penicillin almost 100 years ago.

Hygiene reduces the need for antibiotics by up to 30%
A new paper published in the American Journal of Infection Control (AJIC), finds improved everyday hygiene practices, such as hand-washing, reduces the risk of common infections by up to 50%, reducing the need for antibiotics, by up to 30%.

Antibiotics: City dwellers and children take the most
City dwellers take more antibiotics than people in rural areas; children and the elderly use them more often than middle-aged people; the use of antibiotics decreases as education increases, but only in rich countries: These are three of the more striking trends identified by researchers of the NRW Forschungskolleg ''One Health and Urban Transformation'' at the University of Bonn.

Metals could be the link to new antibiotics
Compounds containing metals could hold the key to the next generation of antibiotics to combat the growing threat of global antibiotic resistance.

Antibiotics from the sea
The team led by Prof. Christian Jogler of Friedrich Schiller University, Jena, has succeeded in cultivating several dozen marine bacteria in the laboratory -- bacteria that had previously been paid little attention.

Antibiotics not necessary for most toothaches, according to new ADA guideline
The American Dental Association (ADA) announced today a new guideline indicating that in most cases, antibiotics are not recommended for toothaches.

Read More: Antibiotics News and Antibiotics Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to