AI speeds up development of new high-entropy alloys

November 11, 2020

Developing new materials takes a lot of time, money and effort. Recently, a POSTECH research team has taken a step closer to creating new materials by applying AI to develop high-entropy alloys (HEAs) which are coined as "alloy of alloys."

A joint research team led by Professor Seungchul Lee, Ph.D. candidate Soo Young Lee, Professor Hyungyu Jin and Ph.D. candidate Seokyeong Byeon of the Department of Mechanical Engineering along with Professor Hyoung Seop Kim of the Department of Materials Science and Engineering have together developed a technique for phase prediction of HEAs using AI. The findings from the study were published in the latest issue of Materials and Design, an international journal on materials science.

Metal materials are conventionally made by mixing the principal element for the desired property with two or three auxiliary elements. In contrast, HEAs are made with equal or similar proportions of five or more elements without a principal element. The types of alloys that can be made like this are theoretically infinite and have exceptional mechanical, thermal, physical, and chemical properties. Alloys resistant to corrosion or extremely low temperatures, and high-strength alloys have already been discovered.

However, until now, designing new high-entropy alloy materials was based on trial and error, thus requiring much time and budget. It was even more difficult to determine in advance the phase and the mechanical and thermal properties of the high-entropy alloy being developed.

To this, the joint research team focused on developing prediction models on HEAs with enhanced phase prediction and explainability using deep learning. They applied deep learning in three perspectives: model optimization, data generation and parameter analysis. In particular, the focus was on building a data-enhancing model based on the conditional generative adversarial network. This allowed AI models to reflect samples of HEAs that have not yet been discovered, thus improving the phase prediction accuracy compared to the conventional methods.

In addition, the research team developed a descriptive AI-based HEA phase prediction model to provide interpretability to deep learning models, which acts as a black box, while also providing guidance on key design parameters for creating HEAs with certain phases.

"This research is the result of drastically improving the limitations of existing research by incorporating AI into HEAs that have recently been drawing much attention," remarked Professor Seungchul Lee. He added, "It is significant that the joint research team's multidisciplinary collaboration has produced the results that can accelerate AI-based fabrication of new materials."

Professor Hyungyu Jin also added, "The results of the study are expected to greatly reduce the time and cost required for the existing new material development process, and to be actively used to develop new high-entropy alloys in the future."
This research was supported by the National Research Foundation's Mid-Career Researcher Program, the High-Potential Individuals Global Training Program of Korea's Institute for Information and Communications Technology Promotion (IITP), and the Development of Meta-Silicide Thermoelectric Semiconductor and Metrology Standardization Technology of Thermoelectric Power Module of the Korea Institute of Energy Technology Evaluation and Planning (KETEP).

Pohang University of Science & Technology (POSTECH)

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to