Dartmouth researcher uses cosmic rays to calculate erosion rates

November 12, 2001

People build houses, plant fields and construct cities on the top layers of the planet's surface. These layers, however, are far from solid. They are flexible and mobile, some parts more than others. Arjun Heimsath, Assistant Professor of Earth Sciences at Dartmouth, measures this dynamic land movement by calculating erosion rates in different parts of the world.

Scientists know that the earth's processes have a profound effect on human lives, and research to study and predict erosion will help people adapt to our changing planet.

In northern Australia, for example, Heimsath's work involves uranium mining. "When you extract uranium during the mining process, you produce radioactive waste. It is piled into an earthen dump that looks like a giant loaf of bread, acres across. That mound of tailings is susceptible to erosion," Heimsath said. With his colleagues, he works to determine how the waste piles will erode over time, and how that eroded material will move through the environment. Their calculations, using one of the most accurate procedures to date, quantify erosion, computing the speed at which land melts into itself, lakes, streams and eventually the ocean.

To conduct his research, Heimsath extracts cosmic isotopes from rock and sediment samples. "Cosmic rays are high energy particles coming in from both galactic and solar sources. I'm primarily interested in the galactic ones that have higher energies. When they hit minerals in a specific way, they knock electrons and neutrons off atoms and create numerous different isotopes," he said. "Concentrations of these isotopes build over time at rates dependent on their location." From those isotope concentrations, also called radionuclides, he can determine how long that material has been there and how fast it's eroding or breaking down.

Heimsath's procedure for determining the age and erosion rate of rocks located up to a few feet beneath the soil emerged from a similar method for rocks on the surface. He collects the samples using a hammer and chisel, a rock drill or a shovel. The sample size ranges from a few grams of gravel and dirt to larger rocks about the size of a gallon of milk. Back in the lab, Heimsath works to extract the chemical data found in the quartz in his samples.

"A solution of acid dissolves everything but the quartz, and then we further break down the quartz to get the radionuclides," Heimsath said. The gallon-container-size original sample is reduced to a pinhead amount of powder. It's placed in a nuclear accelerator where a beam of ions hits the sample, resulting in another beam of electrons. It's then accelerated to close to the speed of light, and the precise atomic makeup of the sample can be measured.

Once he's obtained those figures, he plugs them into a mathematical landscape simulation - where every location or point has a number representing the elevation - to predict how a given set of environmental parameters will move sediments and eroded material around the system.

"My measurements will help explain how sediment moves off the tailings dump, down the hillslope, across grassy flood plains into a stream, picked up by flowing water, moved through rapids and across tree stumps and settles in sandbars. Tree roots could take up some nutrients, while more sediment moves further into natural settling ponds. Finally it gets to the ocean, which is about 40 to 50 kilometers away," he said. The sediment's journey is known as "source to sink," and every step along the way indicates a potential for toxic infiltration.

According to Heimsath, this erosion research is critical to understanding and preserving northern Australian economic and environmental health. An important export product for Australia and a vital source of income for some aborigines, uranium is used to generate nuclear power, and it's also valuable for producing radioisotopes, which have medical uses, metallurgical and engineering applications, and are used as food preservatives.

Heimsath's fieldwork in Nepal links local farming endeavors with his more modern research techniques. In the Himalayan region, known for its striking hills and mountains, landslides plague farmers. It was once thought that thousands of years of farming damaged the countryside.

"Now we can say with relative certainty that humans play a minor role in Himalayan erosion, and it's the natural background processes that are more significant. So, if we get a measurement of long-term erosion rates and compare them to short-term erosion rates from agricultural watersheds, then we can answer the question of 'What is the role of humans?' more definitively," said Heimsath.
-end-
These studies of erosion rates contribute to the "source to sink" initiative of the National Science Foundation. For more information, go to: http://www.ldeo.columbia.edu/margins/Home.html. Heimsath's work in Australia is supported by an Australian Research Council Grant, and in Nepal, the National Science Foundation funds the research.

Dartmouth College

Related Cosmic Rays Articles from Brightsurf:

Cosmic X-rays reveal an indubitable signature of black holes
A black hole is an exotic cosmic object, from within which nothing, not even light, can escape.

Cosmic rays may soon stymie quantum computing
Infinitesimally low levels of radiation, such as from incoming cosmic rays, may soon stymie progress in quantum computing.

Using lung X-rays to diagnose COVID-19
This system uses deep learning to train a neural network model that can distinguish between healthy patients, pneumonia patients and COVID-19 patients.

How cosmic rays may have shaped life
Physicists propose that the influence of cosmic rays on early life may explain nature's preference for a uniform 'handedness' among biology's critical molecules.

Galactic cosmic rays now available for study on Earth, thanks to NASA
To better understand and mitigate the health risks faced by astronauts from exposure to space radiation, we ideally need to be able to test the effects of galactic cosmic rays (GCRs) here on Earth under laboratory conditions.

Not just for bones! X-rays can now tell us about soft tissues too
A new X-ray imaging technique could identify lesions and tumors before ultrasound or MRI can.

Galactic cosmic rays affect Titan's atmosphere
Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn.

Invisible X-rays turn blue
A new reaction system can detect X-rays at the highest sensitivity ever recorded by using organic molecules.

Chest X-rays contain information that can be harvested with AI
The most frequently performed imaging exam in medicine, the chest X-ray, holds 'hidden' prognostic information that can be harvested with artificial intelligence (AI).

X and gamma rays --Even more powerful
International group of researchers including scientists from Skoltech have invented a new method for the generation of intense X and gamma-ray radiation based on Nonlinear Compton Scattering.

Read More: Cosmic Rays News and Cosmic Rays Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.