Brookhaven Lab scientist helps create a new form of the element carbon

November 12, 2003

UPTON, NY - A new phase of the element carbon, a superhard compressed graphite, has been identified by a research team that includes a scientist from the National Synchrotron Light Source (NSLS) at the U.S. Department of Energy's Brookhaven National Laboratory. The findings appeared in the October 17, 2003 issue of Science.

"The new phase is very hard -- it actually left an indentation on diamond," said NSLS physicist Chi-chang Kao.

Using a method developed at the NSLS known as inelastic x-ray scattering, the research team studied the way carbon bonds in sheets of graphite buckle under very high pressures in a diamond anvil cell, a device that uses the polished faces of two diamonds to apply pressure to a sample. Today, pressures achieved in a diamond anvil cell can reach levels that approach conditions in the center of the Earth.

In the experiment, a beam of x-rays was focused on the sample in the diamond anvil cell through a beryllium gasket that is transparent to x-rays. The energy of the scattered x-rays was then analyzed to very high resolution using crystal optics developed at the NSLS. It is due to this ability to perform inelastic x-ray scattering measurements on samples inside a diamond anvil cell that the researchers were able to reveal the details of the chemical bonding changes under high pressure for the first time.

Specifically, this method allows the researchers to distinguish and quantify different types of carbon bonds in the sample. With this new information, the researchers were able to show conclusively that the structure of the high-pressure graphite is not hexagonal diamond, an intermediate form of carbon that lies between graphite and diamond in terms of hardness. Instead, a new distorted graphite-like structure was proposed. This proposed structure was also supported by studying x-ray diffraction patterns of the material.

This study demonstrates the possibility of performing inelastic x-ray scattering using a diamond anvil cell, which Kao says is a "miniature laboratory" that can simulate deep-Earth pressures and may lead to a better understanding of Earth's interior. This kind of study can also be used to understand new phases of other elements, opening a door to additional discoveries and potential materials-science breakthroughs.

The experiment was performed at the Advanced Photon Source at Argonne National Laboratory in Argonne, Illinois, primarily because the x-ray brightness needed to perform the experiment was not available at the NSLS. Kao said that a proposed new facility at Brookhaven, dubbed NSLS II, would be much brighter than the current sources and would be ideal for similar future experiments. See more information on NSLS II at:

The study's lead author is Wendy L. Mao of the University of Chicago and the Carnegie Institute of Washington, who collaborated with a team that includes researchers from those institutions, the University of Alaska, and Argonne National Laboratory.

The experiment was funded by the U.S. Department of Energy's Office of Basic Energy Science within the Office of Science, the DOE's National Nuclear Security Administration, the National Science Foundation, the U.S. Army Tank-Automotive and Armaments Command, and the W.M. Keck Foundation.  

DOE/Brookhaven National Laboratory

Related Carbon Articles from Brightsurf:

The biggest trees capture the most carbon: Large trees dominate carbon storage in forests
A recent study examining carbon storage in Pacific Northwest forests demonstrated that although large-diameter trees (21 inches) only comprised 3% of total stems, they accounted for 42% of the total aboveground carbon storage.

Carbon storage from the lab
Researchers at the University of Freiburg established the world's largest collection of moss species for the peat industry and science

Carbon-carbon covalent bonds far more flexible than presumed
A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat.

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.

Cascades with carbon dioxide
Carbon dioxide (CO(2)) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably.

Two-dimensional carbon networks
Lithium-ion batteries usually contain graphitic carbons as anode materials. Scientists have investigated the carbonic nanoweb graphdiyne as a novel two-dimensional carbon network for its suitability in battery applications.

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.

Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Read More: Carbon News and Carbon Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to