Zinc transporters regulate pancreatic cancer

November 12, 2007

Zinc, an important trace element for healthy growth and development, can be related to pancreatic cancer. Too much ZIP4, a molecule that enables the transport of zinc into cells, promotes the growth and spread of pancreatic tumors cells, said a group of researchers from Baylor College of Medicine in Houston, The University of Texas M.D. Anderson Cancer Center and the University of Florida in Gainesville, in a report which appears online today in the Proceedings of the National Academy of Sciences.

"Zinc plays a critical role in our bodies functioning properly," said Dr. Min Li, assistant professor of the Michael E. DeBakey Department of Surgery at BCM, and lead author of the study. "Zinc must be regulated through proteins called zinc transporters to keep us healthy."

A previous study by one of Li's collaborators, Dr. Craig Logsdon, professor and Lockton Distinguished Professor for Pancreatic Cancer Research at M.D. Anderson, identified high levels of ZIP4 in pancreatic cancer tissue. Li's current study confirmed those findings and also showed that overexpressed ZIP4 increases zinc uptake by the cell, which results in significantly increased tumor growth.

"We need to put these in a big picture and look at the zinc and zinc transporters as a whole in regulating pancreatic cancer growth. There is no simple answer at this point on the role zinc itself is playing," said Li.

"This study shows strong evidence that the zinc transporter is over expressed in pancreatic cancer," said Dr. Changyi (Johnny) Chen, Molecular Surgery Endowed Chair, professor of surgery and vice chair for research in the Michael E. DeBakey Department of Surgery at BCM. "Our next step for research will ask why this happens in pancreatic cancer."

Results showed that 16 of the 17 pancreatic cancer specimens and seven of the eight cell lines grown in the laboratory had higher levels of ZIP4 than healthy tissues and normal pancreatic ductal cells. Researchers then introduced ZIP4 protein into the one pancreatic cancer cell line that did not already over express the molecule. Compared to the original line, the new cells accumulated 73 percent more zinc and significantly increased tumor growth.

This is the first comprehensive study to focus on pancreatic cancer and zinc transporters which has not been previously described. More research is needed before doctors know if limiting or targeting zinc or ZIP4 would affect the progression of pancreatic cancer.

"This study has tremendous impact on pancreatic cancer research because it not only suggests a novel diagnostic marker, but also indicates a candidate for cancer vaccine development" said Dr. Qizhi (Cathy) Yao, professor of the Michael E. DeBakey Department of Surgery and molecular virology & microbiology at BCM.

"Identifying this molecule as being related to tumor growth opens up a door for us, "said Logsdon. "Our hope is that this will lead to a target for new treatments and therapies."
-end-
Others at BCM who took part in this study include Drs. Yuqing Zhang, Uddalak Bharadwaj, Hao Wang, Xinwen Wang, Sheng Zhang, William E. Fisher and F. Charles Brunicardi. Also contributing to the research, Dr. Zijuan Liu of Oakland University, and Drs. Robert J. Cousins, Juan P. Liuzzi and Shou-Mei Chang of the University of Florida.

Funding for this study came from the American Cancer Society, the MacDonald Research Fund, the Michael E. DeBakey Department of Surgery at BCM and the National Institutes of Health.

Baylor College of Medicine

Related Pancreatic Cancer Articles from Brightsurf:

Precision chemo-immunotherapy for pancreatic cancer?
Pancreatic cancer is highly lethal: according to the National Cancer Institute, only about 10 percent of patients remain alive five years after diagnosis.

Nerves keep pancreatic cancer cells from starving
Pancreatic cancer cells avert starvation by signaling to nerves, which grow into dense tumors and secrete nutrients.

Pancreatic cancer: Subtypes with different aggressiveness discovered
To date, no targeted personalized therapies for pancreatic cancer exist.

Bringing the 'sticky' back to pancreatic cancer
A multidisciplinary team of researchers at Japan's Tohoku University has found that a gene regulator, called BACH1, facilitates the spread of pancreatic cancer to other parts of the body.

Does lung damage speed pancreatic cancer?
High levels of CO2 in the body, due to chronic respiratory disorders, may exacerbate pancreatic cancer, making it more aggressive and resistant to therapy.

Scientists have identified the presence of cancer-suppressing cells in pancreatic cancer
Researchers have identified cells containing a protein called Meflin that has a role in restraining the progression of pancreatic cancer.

Pancreatic cancer discovery reveals how the aggressive cancer fuels its growth
A new discovery about pancreatic cancer sheds light on how the cancer fuels its growth and may help explain how promising cancer drugs work -- and for whom they will fail.

Overcoming resistance in pancreatic cancer
In pancreatic cancer cells' struggle to survive, the cells choose alternative routes when their main pathways are blocked by drugs.

Exposing how pancreatic cancer does its dirty work
Pancreatic cancer is a puzzle -- tumors slough off cells into the bloodstream early in the disease, but the tumors themselves have almost no blood vessels in them.

Targeting cell division in pancreatic cancer
Study provides new evidence of synergistic effects of drugs that inhibit cell division and support for further clinical trials.

Read More: Pancreatic Cancer News and Pancreatic Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.