How our senses combine to give us a better view of the world

November 12, 2008

From a young age we are taught about the five senses and how they help us to explore our world. Although each sense seems to be its own entity, recent studies have indicated that there is actually a lot of overlap and blending of the senses occurring in the brain to help us better perceive our environment.

Researchers J.E. Lugo, R. Doti and Jocelyn Flaubert from the University of Montreal, along with Walter Wittich from McGill University, wanted to know if a feeling from an electrical stimulation of a body part (such as the leg) which normally would not be perceived, would be felt if it was simultaneously accompanied by a visual or auditory signal. The researchers studied this by applying slight electrical stimulation to the right calf of volunteers--the stimulation was so slight that it was not detected by the participants. The researchers then paired that electrical stimulation simultaneously with a visual signal, a distinct noise or a progressively louder white noise signal. The volunteers reported when they felt anything in their leg and the electrical response of the calf muscle activation was measured.

The results, reported in Psychological Science, a journal of the Association for Psychological Science, reveal that if an electrical stimulation of the leg is not initially detected, this sensation may be perceived by the addition of a visual or auditory signal with a corresponding electrical activation increase. The results described in this study indicate that the brain not only constantly processes information received from the senses, but also acts on that information to change what is happening in the peripheral system, and thus changing what we actually detect.

The results of the last experiment are characteristic of stochastic resonance. This is an interesting phenomenon where as noise is added to a system, the system's performance improves until, at a certain point, the performance begins to deteriorate. This is exactly what the researchers found in this study--as they increased the signal, participants reported more feeling in their leg, but this eventually decreased, even as the signal continued to get louder. They found this resonance signature even if the stimulus they used in this experiment was not noise but a pulse. These results show that a tactile stimulus combined with a specific level of auditory stimulation results in optimal detection of that sensation. However, too much signal energy will limit the response. It also shows that these dynamics represent a fundamental principle of multisensory integration.

This study gives us more insight into multisensory integration, which the authors argue, will result in increased knowledge of how the brain normally interacts with the peripheral system. In addition, learning more about multisensory integration will lead to a better understanding of disorders such as autism, in which altered sensory processing often occurs.
-end-
For more information about this study, please contact: Jocelyn Faubert (jocelyn.faubert@umontreal.ca)

Psychological Science is ranked among the top 10 general psychology journals for impact by the Institute for Scientific Information. For a copy of the article "Multisensory Integration: Central Processing Modifies Peripheral Systems" and access to other Psychological Science research findings, please contact Barbara Isanski at 202-293-9300 or bisanski@psychologicalscience.org.

Association for Psychological Science

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.