Vaccine for urinary tract infections is 1 step closer

November 12, 2010

ANN ARBOR, Mich. -- Urinary tract infections are a painful, recurring problem for millions of women. They are also getting more dangerous as bacteria develop resistance to the most common treatments.

Scientists from the University of Michigan have moved one step closer to a vaccine that could prevent a majority of urinary tract infections, which are caused by E. coli bacteria. Using a genetic technique rarely used to look at infections in human hosts, the researchers studied how the E. coli bacteria operate and discovered key differences between how the bacteria's genes behave in women and how they behave in mice used in experiments.

Their findings, published online Nov. 11 in PLoS Pathogens, could lead to developments that would save billions in health care costs and millions of doctors' visits and hospitalizations from urinary tract infections each year.

"If we want to prevent infections in humans, we need to look at what's going on with the bacteria while it's in humans," says Harry L.T. Mobley, Ph.D., the study's senior investigator and the Frederick G. Novy Professor and chair of the U-M Department of Microbiology and Immunology. "We're not looking to make the world safer for mice."

Mobley's team found that specific surface structures of the E. coli found in mouse infections, which scientists consider a key to how the bugs thrive, were not prevalent in the human samples.

"That tells us it's more complicated than we thought and that there are some important differences we need to study in human infections," says research fellow Erin C. Hagan, one of the study's two first authors.

Last year, Mobley's team published a study that showed a vaccine they had developed prevented infection and produced key types of immunity in mice.

Even though researchers found differences in gene expression in the mouse and human samples, key targets of the vaccine related to iron acquisition were found in both samples, raising hopes that the vaccine would work in humans. Still, he cautions, developing and testing a vaccine for humans is several years away.

The latest research also provided an opportunity for basic science researchers and clinicians at U-M to work together.

In this case, microbiologists turned to Gary J. Faerber, M.D., a professor of urology at the University of Michigan Medical School and co-director of the Kidney Stone/Lithotriptor Program and the Michigan Center for Minimally Invasive Urology, whose clinic provided the needed samples, which must be collected quickly and carefully to preserve the bacteria.

Urinary tract infections are an increasing concern for Faerber, who says he's seen the number of infections that are resistant to common antibiotic treatments rapidly increase in recent years.

"That resistance is just going to keep going up," Faerber says. He described a recent, older patient whose infection would only respond to a single antibiotic costing $500 per dose and which has to be administered intravenously.

Antibiotic resistance is becoming an issue with not only limiting antibiotic choices but also cost of treatment with newer generation antibiotics, Faerber says.

Urinary Tract Infections in context:
-end-
Additional Authors:Amanda L. Lloyd, U-M research fellow and co-first author; David A. Rasko, University of Maryland School of Medicine.

Disclosure:U-M has applied for patent protection for this technology. The University is presently looking for licensing partners to help bring the technology to market.

Funding:National Institutes of Health

Citation: PLoS Pathogens, Nov. 11, 2010.

Resources:

UTI information guide, kidney.niddk.nih.gov/kudiseases/pubs/uti_ez

U-M Department of Urology, www.med.umich.edu/urology

University of Michigan Health System

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.