Study shows how chronic inflammation can cause cancer

November 12, 2012

COLUMBUS, Ohio - A hormone-like substance produced by the body to promote inflammation can cause an aggressive form of leukemia when present at high levels, according to a new study by researchers at the Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James).

The study shows that high levels of interleukin-15 (IL-15) alone can cause large granular lymphocytic (LGL) leukemia, a rare and usually fatal form of cancer, in an animal model. The researchers also developed a treatment for the leukemia that showed no discernible side effects in the animal model.

Published in the journal Cancer Cell, the findings show that IL-15 is also overexpressed in patients with LGL leukemia and that it causes similar cellular changes, suggesting that the treatment should also benefit people with the malignancy.

"We know that inflammation can cause cancer, but we don't know the exact mechanism," says principal investigator Dr. Michael A. Caligiuri, CEO of The James Cancer Hospital and Solove Research Institute, and director of Ohio State's Comprehensive Cancer Center.

"Here, we show one way it can happen, and we used that information to potentially cure the cancer."

Normally, the body releases IL-15 to stimulate the development, survival and proliferation of natural-killer cells, which are immune cells that destroy cancer and virus-infected cells. This research shows that when IL-15 is present in high amounts in the body for prolonged periods, such as during chronic inflammation, it can cause certain immune cells called large granular lymphocytes, or LGLs, to become cancerous.

This malignant transformation begins when IL-15 attaches to receptors on the surface of normal LGLs, an event that boosts levels of a cancer-causing protein called Myc (pronounced "mick") inside the cells. The high Myc levels, in turn, bring changes that cause chromosome instability and additional gene mutations. The high Myc levels also activate a process called DNA methylation, which turns off a variety of genes, including important genes that normally suppress cancer growth.

"We stand the best chance of curing cancer when we understand its causes," says first author Anjali Mishra, a postdoctoral researcher in Caligiuri's laboratory. "Once we understood how this inflammatory hormone causes this leukemia, we used that information to develop a treatment by interfering with the process."

Caligiuri and Mishra were joined in this study by Dr. Guido Marcucci, associate director for Translational Research at the OSUCCC - James, Dr. Robert Lee, professor of pharmaceutics and pharmaceutical chemistry in Ohio State's College of Pharmacy and a group of collaborators. The investigators conducted the research using cells isolated from patients with LGL leukemia and a mouse model of the disease. Key findings include: Lee developed a liposomal formulation of the proteosome inhibitor bortezomib that shuts down the cancer-causing pathway, potentially curing the malignancy. Leukemic mice treated with the liposomal bortezomib showed 100 percent survival at 130 days versus 100 percent mortality at 60-80 days for control animals.

"We now plan to develop this drug for clinical use," says Marcucci, who holds the John B. and Jane T. McCoy Chair in Cancer Research in Cancer Research.
-end-
Other Ohio State researchers involved in this study were Shujun Liu, Gregory H. Sams, Douglas P. Curphey, Ramasamy Santhanam, Laura J. Rush, Deanna Schaefer, Lauren G. Falkenberg, Laura Sullivan, Laura Jaroncyk, Xiaojuan Yang, Harold Fisk, Lai-Chu Wu, Christopher Hickey, Jason C. Chandler, Yue-Zhong Wu, Nyla A. Heerema, Kenneth K. Chan, Danilo Perrotti, Jianying Zhang, Pierluigi Porcu, Frederick K. Racke and Ramiro Garzon.

The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 41 National Cancer Institute (NCI)-designated Comprehensive Cancer Centers and one of only seven centers funded by the NCI to conduct both phase I and phase II clinical trials. The NCI recently rated Ohio State's cancer program as "exceptional," the highest rating given by NCI survey teams. As the cancer program's 210-bed adult patient-care component, The James is a "Top Hospital" as named by the Leapfrog Group and one of the top cancer hospitals in the nation as ranked by U.S.News & World Report.

Ohio State University Wexner Medical Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.