Medicine: The heart's metronome

November 12, 2013

A specific cell population is responsible for ensuring that our heartbeat remains regular. Researchers from Ludwig-Maximilians-Universitaet (LMU) in Munich have now elucidated the mode of action of one of the crucial components of the heart's intrinsic pacemaker.

The heart possesses a pacemaker of its very own. Specialized pacemaker cells in the so-called sinoatrial node in the left ventricle of the heart control its rate of contraction and relaxation by orchestrating a recurring sequence of electrical signals. Specific proteins known as HCN channels, which are located in the surface membranes of pacemaker cells, play a central role in the generation and transmission of these signals. These proteins function as pores for the passage of electrically charged atoms (ions) across the cell membrane. Because the pore diameter can be regulated, the channels can control the flow of ions across the membrane, and thus determine the difference in electrical potential between the inner and outer surfaces of the cell. Cyclical changes in this parameter give rise to autonomously generated, rhythmic electrical impulses that dictate heartbeat and cardiac rhythmicity.

HCN channels are found primarily in the heart and in the brain, and come in four subtypes, HCN1-4. HCN4 is responsible for about 80% of the total ion current that passes through HCN channels in the sinoatrial node. The other 20% is carried by HCN1 and HCN2. "But while the functions of HCN2 and HCN4 in the sinoatrial node have been extensively studied, the impact of HCN1 on heart rate has so far remained unknown," says Professor Christian Wahl-Schott of the Department of Pharmacy at LMU, who has now closed this gap in our knowledge of the heart's intrinsic pacemaker.

Wahl-Schott and his team and also researchers from Professor Martin Biel's group, tackled the problem by using a mouse strain in which the HCN1 channels in the cells of the sino-atrial node are defective. With the aid of this new experimental model, they were able to demonstrate, for the first time, that HCN1 is involved not in generating the electrical impulse but also in its propagation within the node. Defects in HCN1 function compromise the normal operation of the pacemaker. This results in bradycardia ­- a pathological reduction in heart rate - and increases the incidence of arrhythmias. As a consequence, overall cardiac output is significantly reduced. "We were also able to confirm these effects in vivo by means of telemetric electrocardiography," Wahl-Schott adds.

Defects in cells of the sino-atrial node are associated with sudden cardiac arrest, and more than half of all implantations of artificial pacemakers worldwide are carried out on patients who suffer from such conditions. But the new findings regarding the role of HCN1 in the regulation of heart function are actually of clinical interest for two reasons. On the one hand, this channel subtype offers a promising target for drugs designed to normalize heartbeat frequency. However, HCN1 is also found in nerve cells in the brain, where it likewise acts to control rates of neural firing. This explains why HCN1 blockers are under consideration for use in the treatment of epilepsy, chronic pain and depression. "In light of our results, the potential effects of HCN1 blockers on cardiac function should be carefully assessed before such agents are used in other contexts," Wahl-Schott warns.
-end-


Ludwig-Maximilians-Universität München

Related Heart Rate Articles from Brightsurf:

Women veterans with PTSD have higher rate of heart disease
Women veterans with posttraumatic stress disorder (PTSD) were 44% more likely to develop ischemic heart disease including heart attacks, compared to those without PTSD.

Flu vaccine rate less than 25% in young adults with heart disease, despite increased risk
In 2018, only about 25% of adults between the ages of 18 and 34 with any cardiovascular disease received a flu shot, and in those with a history of a heart attack, only about 20% were vaccinated.

Depression risk detected by measuring heart rate changes
For the first time doctors have shown that measuring changes in 24-hour heart rate can reliably indicate whether or not someone is depressed.

Death rate dramatically less for young heart attack survivors who quit smoking
Among young people who have had a heart attack, quitting smoking is associated with a substantial benefit.

Say no to vaping: Blood pressure, heart rate rises in healthy, young nonsmokers
New research finds that nicotine-filled e-cigarettes cause increases in heart rate and blood pressure in young people, health issues that remain even after a vaping session.

Heart rate measurements of wearable monitors vary by activity, not skin color
Biomedical engineers at Duke University have demonstrated that while different wearable technologies, like smart watches and fitness trackers, can accurately measure heart rate across a variety of skin tones, the accuracy between devices begins to vary wildly when they measure heart rate during different types of everyday activities, like typing.

Researchers report first recording of a blue whale's heart rate
With a lot of ingenuity and a little luck, researchers monitored the heart rate of a blue whale in the wild.

Pupil dilation and heart rate, analyzed by AI, may help spot autism early
Autism and other neurodevelopmental disorders often aren't diagnosed until a child is a few years of age, when behavioral interventions and speech/occupational therapy become less effective.

Heart rate variation due to stress affects auditory attention
Study shows that brain activity related to auditory perception parallels heart rate, offering new perspectives for the treatment of attention and communication disorders.

In HIE, lower heart rate variability signals stressed newborns
In newborns with hypoxic-ischemic encephalopathy, lower heart rate variability correlates with autonomic manifestations of stress shortly after birth, underscoring the importance of this reading as a valuable biomarker, according to Children's research presented during the Pediatric Academic Societies 2019 Annual Meeting.

Read More: Heart Rate News and Heart Rate Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.