Scientists unveil new targets, test to develop treatments for memory disorder

November 12, 2014

JUPITER, FL, November 12, 2014 - In a pair of related studies, scientists from the Florida campus of The Scripps Research Institute (TSRI) have identified a number of new therapeutic targets for memory disorders and have developed a new screening test to uncover compounds that may one day work against those disorders.

The two studies, one published in the journal Proceedings of the National Academy of Sciences (PNAS), the other in the journal ASSAY and Drug Development Technologies, could lead new approaches to some of the most problematic diseases facing a rapidly aging world population, including Alzheimer's and Huntington's diseases and dementia.

"We are actively looking at molecules critical to memory formation, so these two studies work in parallel," said Sathyanarayanan V. Puthanveettil, a TSRI biologist who led both studies. "In one study, we're reaching for a basic understanding of the process, and in the other, we're finding new ways to identify drug candidates so that we can cure these diseases."

Unlocking the 'Synaptic Proteome'

The PNAS study is one of the first detailed descriptions of the proteins that are transported to the synapses, which as a group are called the "synaptic proteome." Synapses are the part of a nerve cell (neuron) that passes electrochemical signals to other cells during functions such as memory storage. This new approach has the potential to advance our understanding of how synapses work, how their composition changes with learning and how brain diseases might affect them.

"We know these molecules function in the synapse, and if we can regulate their function there may be some very good therapeutic opportunities there," Puthanveettil said.

The study focuses on kinesin, a molecular motor protein that plays a role in the transport of other proteins throughout a cell.

Analyzing three kinesin complexes, the researchers found that approximately 40 to 50 percent of the protein cargos were synaptic proteins--and that the identity and location of these kinesins determine which proteins they transport. These results reveal a previously underappreciated role of kinesins in regulating the composition of the entire synaptic proteome.

Interestingly, a bioinformatics analysis revealed the three kinesin cargo complexes examined in the study are involved in neurologic diseases. Approximately 60 cargos (out of 155) of the kinesin Kif5C are implicated in psychiatric disorders, while around 20 cargos of another kinesin Kif3A are implicated in developmental disorders.

"This shows for the first time how kinesins expressed in the same neurons can carry substantially different cargos," said Research Associate Xin-An Liu, the first author of the study. "We can use this approach to identify what molecules may be targeted for memory and in major disorders. The next step is to find how the synaptic proteome changes in neuropsychiatric diseases."

Toward New Drug Candidates

In the ASSAY study, Puthanveettil and his colleagues describe their new high-throughput screening test for discovering potential drug candidates based on kinesin and axonal transport for the treatment of memory disorders.

"The luminescence-based assay that we developed is highly reproducible and robust," said Puthanveetil.

Using the approach, the team screened a compound collection and identified a number of small molecules that turned on or off activity of a human kinesin.
-end-
In addition to Liu and Puthanveettil, other authors of the PNAS study, "New Approach to Capture and Characterize Synaptic Proteome," include Beena Kadakkuzha, Bruce Pascal, Caitlin Steckler, Komolitdin Akhmedov and Michael Chalmers of The Scripps Research Institute; and Long Yan of Max Planck Florida Institute for Neuroscience. See http://www.pnas.org/content/early/2014/10/28/1401483111.abstract

This study was supported by the Whitehall Foundation and the National Institute of Mental Health of the National Institutes of Health (R21MH096258-01A1).

In addition to Puthanveettil and Kadakkuzha, authors of the ASSAY study, "High-Throughput Screening for Small Molecule Modulators of Motor Protein Kinesin," include Timothy Spicer, Peter Chase, Jeffery B. Richman and Peter Hodder (present address: Amgen, Inc.) of TSRI. See http://online.liebertpub.com/doi/abs/10.1089/adt.2014.579

This work was supported by the Alzheimer's Drug Discovery Foundation, Margaret Q. Landenberger Research Foundation and TSRI.

Scripps Research Institute

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.