Nav: Home

Discovery: Molecular mechanism at root of familial amyloidosis and other diseases

November 12, 2015

(Boston)--A team of local researchers has proposed a molecular mechanism that may be responsible for the development of life-threatening diseases called amyloidoses. The best known of such diseases is Alzheimer's disease (AD), but there are many others that are receiving increased scrutiny, in part because of mounting evidence linking them to atherosclerosis and aging.

The findings, which appear in the Journal of Molecular Biology, may ultimately lead to the development of therapeutic targets for one of these diseases.

A group of disorders, called amyloid diseases, occurs due to proteins that form abnormal clumps and deposit in different organs, causing damage to the brain (AD, Parkinson's disease), heart (cardiac amyloidosis), kidney, liver and other vital organs. One such protein called apolipoprotein A-1 (apoA-1) forms the scaffold of the so-called "good cholesterol," or high-density lipoprotein (HDL). Normally, apoA-1/HDL removes excess cholesterol and other fats from the body and is protective against cardiovascular disease. However, when mutations or other errors occur within this protein, apoA-1 has the potential to aggregate and manifest as familial form of amyloidosis, which is a life-threatening incurable disease. ApoA-I can also deposit in arteries, thereby contributing to atherosclerosis. While the medical community has known for some time that abnormal proteins can cause disease due to exposed vulnerable "hot spots" that clump together, there has been a lack of understanding about how a "good" protein can become so "bad," especially at a molecular level.

Using cutting-edge technology to study the dynamic behavior and molecular shape of apoA-1 and its various mutant forms, researchers at Boston University School of Medicine (BUSM) and Northeastern University were surprised to discover that exposed "hot spots" in apoA-I do not always cause amyloid disease. Some mutations led to decreased protection in other vulnerable parts, which helped the body to get rid of the protein before it clumps. These mutations in apoA-I did not cause amyloid disease in humans. The researchers suggest that this finding is not limited to apoA-I but possibly applies to other amyloid-forming proteins. Surprisingly, some mutations occurring at one end of the protein acted like "molecular remote-controls" and changed the structure and activity of the other end.

According to the researchers, solving the puzzle of the molecular changes that cause amyloid diseases has important implications for potential treatments. "If one could predict what makes any given protein to form amyloid, one could begin to design tools to decelerate or even block this pathogenic process before it starts," explained corresponding author Olga Gursky, PhD, professor of Physiology and Biophysics at BUSM.
-end-
Funding for this study was provided by the National Institutes of Health grants GM067260 (to Olga Gursky, BUSM) and GM101135 (to John Engen, NEU), with additional support from Waters Corporation (John Engen). Dr. Xiaohu Mei was supported by the NIH grant HL116518 (to David Atkinson, BUSM).

Contact: Gina DiGravio, 617-638-8480, ginad@bu.edu

Boston University Medical Center

Related Atherosclerosis Articles:

Running multiple marathons does not increase risk of atherosclerosis
Running multiple marathons does not increase the risk of atherosclerosis, according to research published today in the European Journal of Preventive Cardiology.
Atherosclerosis: Endogenous peptide lowers cholesterol
Cells of the innate immune system that play an important role in development of atherosclerosis contain a protein that reduces levels of cholesterol in mice -- and thus helps to inhibit or mitigate the disease.
Activation of 2 genes linked to development of atherosclerosis
Researchers at Brigham and Women's Hospital have found two new potential drug targets for treating arterial diseases such as atherosclerosis.
Promoting regulatory T cell production may help control atherosclerosis
This month in the JCI, work led by Catherine Hedrick at the La Jolla Institute for Allergy and Immunology uncovered a pathway that controls the balance between pro-inflammatory and regulatory T cells and may influence the progression of atherosclerosis.
Ring-shaped sugar helps in cases of atherosclerosis
Hardened and inflamed arteries, atherosclerosis, can be very dangerous. The consequences of atherosclerosis are among the most common causes of death in industrialized nations; in particular heart attacks and strokes.
Atherosclerosis: A short cut to inflammation
The enzyme Dicer processes RNA transcripts, cutting them into short segments that regulate the synthesis of specific proteins.
Testosterone supplementation does not result in progression of atherosclerosis
Among older men with low testosterone levels, testosterone administration for three years compared with placebo did not result in a significant difference in the rates of change in atherosclerosis (thickening and hardening of artery walls), nor was it associated with improved overall sexual function or health-related quality of life, according to a study in the Aug.
Fundamental beliefs about atherosclerosis overturned
Doctors' efforts to battle the dangerous atherosclerotic plaques that build up in our arteries and cause heart attacks and strokes are built on several false beliefs about the fundamental composition and formation of the plaques, new research from the University of Virginia School of Medicine shows.
'Cleaner' protein protects against atherosclerosis
We have an innate mechanism that ensures that our blood vessels do not become blocked.
Asymptomatic atherosclerosis linked to cognitive impairment
In a study of nearly 2,000 adults, researchers found that a buildup of plaque in the body's major arteries was associated with mild cognitive impairment.

Related Atherosclerosis Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".