Nav: Home

New information about bacterial enzymes to help scientists develop more effective antibiotics, cancer drugs

November 12, 2015

Scientists studying the biosynthesis and production of microbial natural products now have a greater insight into the process thanks to research conducted at the U.S. Department of Energy's Argonne National Laboratory in collaboration with scientists from the Scripps Research Institute and Rice University.

Armed with this new information, researchers can use it to manipulate nature's biosynthetic machinery to produce more effective antibiotics and cancer-fighting drugs.

Streptomyces are Gram-positive bacteria that live in soil. These bacteria possess a complex metabolism and are known to naturally produce clinically useful compounds.

One large class of natural products, known as polyketides, includes many drugs such as erythromycin (antibacterial) and rapamycin (immunosuppressive), as well as promising drug leads such as migrastatin and oxazolomycin reported in the current study, which show important antibacterial, antitumor, and anti-human immunodeficiency virus activity.

These antibiotics are synthesized by a set of enzymes that are orchestrated into assembly-line-like biosynthetic machinery. Researchers in this study focused on understanding the enzymes specificity, which is responsible for generating the vast chemical structural diversities known for migrastatin, oxazolomycin and other polyketides.

Andrzej Joachimiak works in the biosciences division at Argonne and was one of the authors of a recent paper published on the topic in The Proceedings of the National Academy of Sciences of the United States of America.

"If we understand the specificity of these processes, we will be able to engineer the enzymes to accept other chemical molecules, opening the door to new treatments for some of our most challenging diseases," said Joachimiak, director of the Department of Energy's Structural Biology Center, which is located at Argonne.

Antibiotics are made up of a set of multiple enzymes that perform consecutive actions.

Scientists seek to modify these molecules chemically to create new drugs with improved therapeutic properties.

"In order to do that we need to understand the specificity of this "enzymatic assembly line," Dr. Ben Shen of the Scripps Research Institute said. "We need to know which part we need to place, and do it in a rational and specific manner, to synthesize the designer compounds."

Manipulating enzymes that catalyze complex reactions that alter natural product structures to create diverse novel compounds with new biological activities is a key.

This work was done with the help of the Advanced Protein Characterization Facility, which has greatly aided medical and biomedical research by automating the production of protein and protein crystals - two key steps in solving the structure of proteins, understanding how they operate and ultimately helping to identify new and more effective drug treatments.

Proteins are long molecular chains that fold on themselves in complex ways with many of those folds serving as docking sites where other molecules - including those from pathogens - can attach.

In protein structure research, snippets of the DNA code for a protein are cloned. The clones are used to produce the proteins that are isolated and exposed to various chemical environments with the hope that one of them will cause the protein molecules to form a crystal.

This can take days, weeks or even months. But when it happens, the protein molecules align to form a repeating array. That repetitive configuration allows X-rays from the Advanced Photon Source, a DOE Office of Science User Facility located at Argonne, to analyze the three-dimensional structure of the molecules by means of their different signatures.

This helps Joachimiak and his team to solve age-old problems.

"This work would not be possible without the technology and equipment available here at Argonne," he said.
-end-
This research is detailed in the paper "Structural and Evolutionary Relationships of "AT-less" Type I Polyketide Synthase Ketosynthases," published in the Proceedings of the National Academies of Science. Additional co-authors include Jeremy R. Lohman, Ming Ma, Jerzy Osipiuk, Boguslaw Nocek, Youngchang Kim, Changsoo Chang, Marianne Cuff, Jamey Mack, Lance Bigelow, Hui Li, Michael Endres, Gyorgy Babnigg and George N. Phillips, Jr.

This work was supported in part by grants made available from the National Institutes of Health.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. With employees from more than 60 nations, Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

DOE/Argonne National Laboratory

Related Antibiotics Articles:

Antibiotics promote resistance on experimental croplands
Canadian researchers have generated both novel and existing antibiotic resistance mechanisms on experimental farmland, by exposing the soil to specific antibiotics.
Why antibiotics fail
UCSB biologists correct a flaw in the way bacterial susceptibility to these drugs is tested.
Fungi have enormous potential for new antibiotics
Fungi are a potential goldmine for the production of pharmaceuticals.
Antibiotics can boost bacterial reproduction
The growth of bacteria can be stimulated by antibiotics, scientists at the University of Exeter have discovered.
Last-line antibiotics are failing
The ECDC's latest data on antimicrobial resistance and consumption shows that in 2015, antibiotic resistance continued to increase for most bacteria and antibiotics under surveillance.
Two antibiotics fight bacteria differently than thought
Two widely prescribed antibiotics -- chloramphenicol and linezolid -- may fight bacteria in a different way from what scientists and doctors thought for years, University of Illinois at Chicago researchers have found.
Preserving the power of antibiotics
News release describes efforts to address inappropriate antibiotic prescribing in emergency departments and urgent-care centers nationwide, which a JAMA study published this past May found rates as high as 50 percent for acute respiratory infections in US emergency departments.
Antibiotics could be cut by up to one-third, say dairy farmers
Nine in 10 dairy farmers participating in a new survey from the Royal Association of British Dairy Farmers (RADBF) say that the farming industry must take a proactive lead in the battle against antibiotic resistance.
Antibiotics may be inappropriate for uncomplicated diverticulitis
Antibiotics are advised in most guidelines on diverticulitis, which arises when one or more small pouches in the digestive tract become inflamed or infected.
New book on Antibiotics and Antibiotic Resistance from CSHLPress
'Antibiotics and Antibiotic Resistance' from CSHLPress examines the major classes of antibiotics, together with their modes of action and mechanisms of resistance.

Related Antibiotics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.