Nav: Home

Target gene identified for therapies to combat muscular dystrophy

November 12, 2015

Researchers at the University of São Paulo's Bioscience Institute (IB-USP) in Brazil have shown that a gene called Jagged1, or JAG1 for short, could be a target for the development of new approaches to treat Duchenne muscular dystrophy (DMD), a genetic disorder characterized by progressive muscle degeneration.

The research was carried out at the Human Genome & Stem Cell Research Center (HUG-CELL), one of the Research, Innovation and Dissemination Centers (RIDCs) supported by São Paulo Research Foundation (FAPESP).

"All the genetic therapies tested so far, with little success, have targeted the gene that codes for the protein dystrophin. We're presenting a different approach, which opens up a range of new possibilities," said Mayana Zatz, Full Professor of Genetics at IB-USP and Head of HUG-CELL.

Duchenne muscular dystrophy, Zatz explained, primarily affects males and is the most common and most rapidly progressing type of muscular dystrophy. It is caused by a mutation, usually inherited, in the gene that encodes dystrophin, a protein that is essential for muscle health and is entirely absent in DMD patients.

"Dystrophin maintains the integrity of the membrane surrounding muscle cells," Zatz said. "When this protein is absent, the membrane becomes flaccid, so important proteins leak out of the muscle tissue and enter the bloodstream. Conversely, substances that should remain outside, such as calcium, are able to get in."

The heart, diaphragm and skeletal muscles are affected. Difficulty with walking and running first appear in boys aged between 3 and 5. Patients are usually confined to a wheelchair by age 10-12.

"Without special care, patients don't reach the age of 20. Nowadays, with assisted breathing, they may survive until they're 40 or beyond," Zatz said.

Over the past 15 years, researchers at HUG-CELL have performed experiments to extend our knowledge of DMD. They have studied animals such as Golden Retrievers born with a dystrophin gene mutation, which develop a clinical condition similar to human DMD. Most dystrophic dogs live for only two years or less.

"Some time ago, we identified a dog that totally lacked dystrophin yet presented with a much milder form of the disease," Zatz said. "It survived for 11 years, considered normal for this breed, and left a descendant that inherited the mutation and is now nine years old."

Ringo and Suflair, as the dogs were called, became the center of attention for the research group, that compared gene expression in healthy dogs, dogs with severe muscular dystrophy, and the above two dogs with the milder form of the disease.

The researchers found some candidate genes, and in a partnership with Professor Louis Kunkel and his team at Harvard Medical School, and Professor Kerstin Lindblad-Toh at the Broad Institute of MIT and Harvard in the United States, it was possible to combine the results with genetic data. They identified a region of the genome that's associated with the benign clinical condition and found increased expression of JAG1, a gene in this region, in Ringo and Suflair. This could explain why they have a more benign form of the disease

To confirm that alterations in JAG1 expression can indeed affect the severity of the disease, they conducted experiments using a zebrafish model. The zebrafish (Danio rerio) shares approximately 70% of its genome with humans.

The experiments were performed in Prof. Kunkel's laboratory. Prof. Kunkel discovered the dystrophin gene and is currently a researcher at Harvard Medical School.

"The zebrafish model also has a dystrophin gene mutation," Zatz said. "As a result, its muscles are weak, and it can't move. When we increased JAG1 expression in zebrafish without dystrophin, we found that 75% failed to develop the dystrophic phenotype." Overexpression was induced in the model by injecting embryos with JAG1 messenger RNA.
-end-


Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Muscular Dystrophy Articles:

New therapy targets cause of adult-onset muscular dystrophy
The compound designed at Scripps Research, called Cugamycin, works by recognizing toxic RNA repeats and destroying the garbled gene transcript.
Gene therapy cassettes improved for muscular dystrophy
Experimental gene therapy cassettes for Duchenne muscular dystrophy have been modified to deliver better performance.
Discovery points to innovative new way to treat Duchenne muscular dystrophy
Researchers at The Ottawa Hospital and the University of Ottawa have discovered a new way to treat the loss of muscle function caused by Duchenne muscular dystrophy in animal models of the disease.
Extracellular RNA in urine may provide useful biomarkers for muscular dystrophy
Massachusetts General Hospital researchers have found that extracellular RNA in urine may be a source of biomarkers for the two most common forms of muscular dystrophy, noninvasively providing information about whether therapeutic drugs are having the desired effects on a molecular level.
CRISPR halts Duchenne muscular dystrophy progression in dogs
Scientists for the first time have used CRISPR gene editing to halt the progression of Duchenne muscular dystrophy (DMD) in a large mammal, according to a study by UT Southwestern that provides a strong indication that a lifesaving treatment may be in the pipeline.
Tamoxifen and raloxifene slow down the progression of muscular dystrophy
Steroids are currently the only available treatment to reduce the repetitive cycles of inflammation and disease progression associated with functional deterioration in patients with muscular dystrophy (MD).
Designed proteins to treat muscular dystrophy
The cell scaffolding holds muscle fibers together and protects them from damage.
Gene-editing alternative corrects Duchenne muscular dystrophy
Using the new gene-editing enzyme CRISPR-Cpf1, researchers at UT Southwestern Medical Center have successfully corrected Duchenne muscular dystrophy in human cells and mice in the lab.
GW researcher finds genetic cause of new type of muscular dystrophy
George Washington University & St. George's University of London research, published in The American Journal of Human Genetics, outlines a newly discovered genetic mutation associated with short stature, muscle weakness, intellectual disability, and cataracts, leading researchers to believe this is a new type of congenital muscular dystrophy.
Not all Europeans receive the same care for Duchenne muscular dystrophy
Duchenne muscular dystrophy (DMD), a progressive muscle disease affecting one in 3,800-6,300 live male births and leads to ambulatory loss, respiratory problems, cardiomyopathy, and early death of patients in their 20s or 30s.
More Muscular Dystrophy News and Muscular Dystrophy Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.