Nav: Home

Researchers discover other enzyme critical to maintaining telomere length

November 12, 2015

Since the Nobel Prize-winning discovery of the enzyme telomerase in 1984, identifying other biological molecules that lengthen or shorten the protective caps on the ends of chromosomes has been slow going. Now, researchers at Johns Hopkins report uncovering the role of an enzyme crucial to telomere length and say the new method they used to find it should speed discovery of other proteins and processes that determine telomere length. Their results appear in the Nov. 24 issue of Cell Reports.

"We've known for a long time that telomerase doesn't tell the whole story of why chromosomes' telomeres are a given length, but with the tools we had, it was difficult to figure out which proteins were responsible for getting telomerase to do its work," says Carol Greider, Ph.D., the Daniel Nathans Professor and Director of Molecular Biology and Genetics in the Johns Hopkins Institute for Basic Biomedical Sciences. Greider won the 2009 Nobel Prize in Physiology or Medicine for the discovery of telomerase.

Figuring out exactly what's needed to lengthen telomeres has broad health implications, Greider notes, because shortened telomeres have been implicated in aging and in diseases as diverse as lung and bone marrow disorders, while overly long telomeres are linked to cancer. Because telomeres naturally shorten each time DNA is copied in preparation for cell division, cells need a well-tuned process to keep adding the right number of building blocks back onto telomeres over an organism's lifetime.

But until now researchers have been saddled with a limiting and time-consuming test for whether a given protein is involved in maintaining telomere length, a test that first requires blocking a suspected protein's action in lab-grown cells, then getting the cells to grow and divide for about three months so that detectable differences in telomere length can emerge. In addition to being time consuming, the test could not be used at all for proteins whose loss would kill the cells before the three-month mark.

To find a better tool, graduate student Stella Suyong Lee, working in Greider's laboratory, started with a concept used for measuring telomere length in yeast. The idea was to artificially cut mammalian cells' telomeres, then detect elongation by telomerase -- a test that would take less than a day, and could be performed even if the blocked proteins were needed for cells to divide. But making the transition from yeast to mammals involved a host of unforeseen technical difficulties, and the project took nearly five years. Greider credits Lee's persistence for its eventual success.

For their trial run of the new test, dubbed addition of de novo initiated telomeres (ADDIT), Greider's group examined an enzyme called ATM kinase. "ATM kinase was known to be involved in DNA repair, but there were conflicting reports about whether it had a role in telomere lengthening," says Greider. Her team blocked the enzyme in lab-grown mouse cells, and used ADDIT to find that it was indeed needed to lengthen telomeres. They verified the result using the old, three-month-long telomere test, and got the same result.

The team also found that in normal mouse cells, a drug that blocks an enzyme called PARP1 would activate ATM kinase and spur telomere lengthening. This finding offers a proof of principle for drug-based telomere elongation to treat short-telomere diseases, such as bone marrow failure, Greider says -- but she cautions that PARP1 inhibitor drug itself doesn't have the same telomere-elongating effect in human cells as it does in mouse cells.

Greider's group plans to use ADDIT to find out more about the telomere-lengthening biochemical pathway that ATM kinase is a part of, as well as other pathways that help determine telomere length. "The potential applications are very exciting," Lee says. "Ultimately ADDIT can help us understand how cells strike a balance between aging and the uncontrolled cell growth of cancer, which is very intriguing."
-end-
Other authors on the paper are Craig Bohrson, Alexandra Mims Pike and Sarah Jo Wheelan, all of Johns Hopkins University School of Medicine.

This study was funded by the National Institute on Aging (grant number R37AG009383), the Turock Fellowship, and a Commonwealth Foundation Grant.

Johns Hopkins Medicine

Related Telomeres Articles:

New insight into how telomeres protect cells from premature senescence
Researchers at the Institute of Molecular Biology and Johannes Gutenberg University Mainz have further uncovered the secrets of telomeres, the caps that protect the ends of our chromosomes.
Discovery by NUS researchers improves understanding of cellular aging and cancer development
A team of researchers led by Dr Dennis Kappei, a Special Fellow from the Cancer Science Institute of Singapore at the National University of Singapore, has discovered the role of the protein ZBTB48 in regulating both telomeres and mitochondria, which are key players involved in cellular ageing.
High levels of exercise linked to 9 years of less aging at the cellular level
Despite their best efforts, no scientist has ever come close to stopping humans from aging.
Longer telomeres may shield mice from age-related human diseases
Researchers in Deepak Srivastava's laboratory at the Gladstone Institute of Cardiovascular Disease hypothesized that mice may be protected from age-associated human diseases due to the relatively longer length of their telomeres, the regions at the end of chromosomes that help guard against deterioration.
Longer telomeres protect against diseases of aging: A tale of mice and men
Scientists at the Gladstone Institutes discovered a key mechanism that protects mice from developing a human disease of aging, and begins to explain the wide spectrum of disease severity often seen in humans.
'In vivo' reprogramming induces signs of telomere rejuvenation
During the 'in vivo' reprogramming process, cellular telomeres are extended due to an increase in endogenous telomerase.
TSRI scientists discover master regulator of cellular aging
Scientists at The Scripps Research Institute have discovered a protein that fine-tunes the cellular clock involved in aging.
Aging and cancer: An enzyme protects chromosomes from oxidative damage
EPFL scientists have identified a protein that caps chromosomes during cell division and protect them from oxidative damage and shortening, which are associated with aging and cancer.
Length of telomeres should tell whether vitamin D, omega-3 are good for the heart, longevity
The length of your telomeres appears to be a window into your heart health and longevity, and scientists are measuring them to see if vitamin D and omega-3 supplements really improve both.
DNA damage response links short telomeres, heart disorder in Duchenne muscular dystrophy
A new study shows that telomeres shorten without cell division in a mouse model of Duchenne muscular dystrophy.

Related Telomeres Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...