Nav: Home

Researchers pinpoint roadblocks to lab-grown stem cells' maturation

November 12, 2015

Johns Hopkins researchers report that a new study of mouse cells has revealed reasons why attempts to grow stem cells to maturity in the laboratory often fail, and provided a possible way to overcome such "developmental arrest."

Their findings, described in the Nov. 24 issue of the journal Cell Reports, will likely advance the use of stem cells to study and treat adult-onset heart disease, the investigators say.

Nine years ago, Kyoto University's Shinya Yamanaka unveiled a technique to transform virtually any cell in the body into a stem cell -- so-called induced pluripotent stem cells (iPSCs). But some scientists hoping to use the cells for research and therapies have been thwarted by a strange feature of cells grown from iPSCs, the researchers note. "These cells' maturation is arrested in the embryonic stage, even when they've grown in a dish for a year or more," says Chulan Kwon, Ph.D. , an assistant professor of medicine and member of the Johns Hopkins University School of Medicine's Institute for Cell Engineering, who led the study.

Building on his team's interest in using iPSCs from people with heart disease to grow heart tissue, Kwon and his colleagues sought ways to overcome the maturation problem. Doing so, he says, would give them additional information about how heart disease comes about and enable them to more easily screen potential medications. But since heart disease largely affects adults, not embryos, working with immature iPSCs was a nonstarter.

To learn more about the root of arrested development and how it might be overcome, Kwon's research team and their collaborators analyzed more than 200 heart cell samples from mice embryos and animals of every stage through adulthood, as well as from lab-grown heart tissue made from iPSCs. "We analyzed large-scale datasets to minimize the effect of variation between laboratories," says lead investigator Hideki Uosaki, M.D., Ph.D., a postdoctoral fellow at the Johns Hopkins University School of Medicine.

Cells develop and reach maturity by precisely choreographing the use of particular genes so that the right proteins are made at the right time. The researchers looked at the expression of more than 17,000 genes in the cells -- that is, whether a particular gene was being used, and if so, how much. The team also devised specialized software to make sense of the data.

Their results revealed certain biochemical chain reactions, known as pathways, that normally shut down -- or start up -- as heart cells reach maturity. These include pathways that allow cells to divide rapidly and form new cells, and to break down fats for energy. In the iPSCs, many of the pathways that were supposed to be off in adult cells were on, and vice versa. Their maturation levels corresponded to that of late-gestation embryos. "That potentially explains why iPSC-derived cells have maturation problems," Kwon says.

Kwon thinks the explanation for the out-of-whack pathways may be the artificial nature of laboratory cell culture, which is not at all the same as what stem cells would experience inside a living organism.

Now that they know the precise pathways responsible for stalled development, the team says, the plan is to find ways to tune the pathways to induce true, steady maturation and re-create adult heart tissue in the lab. The team also plans to use their method to study tissue maturation of other organs.
-end-
Other authors on the paper are Dong I. Lee, Songnan Wang, Matthew Miyamoto, Laviel Fernandez and David A. Kass of the Johns Hopkins University School of Medicine, and Patrick Cahan of Harvard Medical School.

The study was funded by the Magic that Matters Fund; the National Heart, Lung, and Blood Institute (grant numbers R01HL111198, HL119012 and HL107153); a fellowship from the Japan Society for the Promotion of Science; the National Institute of Diabetes and Digestive and Kidney Diseases (grant number K01DK096013); and Fondation Leducq.

Johns Hopkins Medicine

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".