Nav: Home

TGen identifies drug that could limit the spread of deadly brain tumors

November 12, 2015

PHOENIX, Ariz. -- Nov. 12, 2015 -- In a significant breakthrough, the Translational Genomics Research Institute (TGen) has identified a drug, propentofylline or PPF, that could help treat patients with deadly brain cancer.

In a study published today in the Journal of NeuroOncology, TGen researchers report that PPF works to limit the spread of glioblastoma multiforme, or GBM -- the most common primary tumor of the brain and central nervous system -- by targeting a protein called TROY.

In addition, TGen laboratory research also found that PPF increases the effectiveness of a standard-of-care chemotherapy drug called temozolomide (TMZ), and radiation, to treat glioblastoma.

"We showed that PPF decreased glioblastoma cell expression of TROY, inhibited glioma cell invasion, and made brain cancer cells more vulnerable to TMZ and radiation," said Dr. Nhan Tran, Associate Professor and head of TGen's Central Nervous System Tumor Research Lab.

An advantage of small-molecule PPF -- which has been previously used in clinical trials in an attempt to treat Alzheimer's disease and dementia -- is that it can penetrate the blood-brain barrier and reach the tumor. And, the FDA has already approved it.

"Our data suggests that PPF, working in combination with TMZ and radiation, could limit glioblastoma invasion and improve the clinical outcome for brain tumor patients," said Dr. Tran, the study's senior author.

This study was funded, in part, by The Ben & Catherine Ivy Foundation.

"GBM is one of the most aggressive of all cancers and it affects people of all ages," said Catherine (Bracken) Ivy, founder and president of The Ben & Catherine Ivy Foundation. "Funding research focused on helping patients survive longer is critical, and studies such as this advance our goal of not only improving treatments for brain cancer, but eventually finding a cure."

One of the primary treatments for glioblastoma is surgical removal of the tumor. However, because of the aggressive way glioblastomas invade surrounding brain tissue, it is impossible to remove all parts of the tumors, and the cancer eventually returns and spreads. This insidious cancer invasion also limits the effectiveness of chemotherapy drugs and radiation therapy.

TGen found that PPF works to limit the spread of glioblastomas by targeting and knocking down the expression of the TROY protein. TGen researchers have linked TROY to the cellular mechanisms that enable glioblastomas to invade normal brain cells, and resist anti-cancer drugs.

"New therapeutic strategies that target the molecular drivers of invasion are required for improved clinical outcome," said Dr. Harshil Dhruv, a TGen Research Assistant Professor and lead author of the study. "Propentofylline may provide a pharmacologic approach to targeting TROY, inhibiting cell invasion and reducing therapeutic resistance in glioblastomas."

One of the fundamental challenges in treating brain cancer with drugs is what is known as the blood-brain barrier that separates circulating blood from the brain extracellular fluid in the central nervous system. This barrier works to protect the brain from toxins. However, this security system is so effective at protecting the brain that it prevents many life-saving drugs -- all but some small molecules -- from being able to treat cancer and other diseases of the brain.

As a result, there has been little progress in recent decades in finding new effective treatments for GBM. Median survival for newly diagnosed GBM patients is only 14.6 months. Only 5 percent of patients survive more than 5 years.

"Clinical trials revealed that PPF can cross the blood-brain barrier, and has minimal side effects," Dr. Tran said. "PPF could be easily translated to the clinic as an adjuvant therapy in combination with standard of care treatment for GBM patients."
-end-
This study -- Propentofylline inhibits glioblastoma cell invasion and survival by targeting the TROY signaling pathway -- also was funded by the National Institutes of Health under grants NS86853 and P50 CA108961. To read the abstract, visit: http://link.springer.com/article/10.1007/s11060-015-1981-0.

About The Ben & Catherine Ivy Foundation

The Ben & Catherine Ivy Foundation, based in Scottsdale, Ariz., was formed in 2005, when Ben Ivy lost his battle with glioblastoma multiforme (GBM). Since then, the Foundation has contributed more than $50 million to research in gliomas within the United States and Canada, with the goal of better diagnostics and treatments that offer long-term survival and a high quality of life for patients with brain tumors. The Ben & Catherine Ivy Foundation is the largest privately funded foundation of its kind in the United States. For more information, visit http://www.ivyfoundation.org.

Press Contact:

Beth McRae
The McRae Agency
480-990-0282
beth@mcraeagency.com

About TGen

Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life changing results. TGen is focused on helping patients with neurological disorders, cancer, and diabetes, through cutting edge translational research (the process of rapidly moving research towards patient benefit). TGen physicians and scientists work to unravel the genetic components of both common and rare complex diseases in adults and children. Working with collaborators in the scientific and medical communities literally worldwide, TGen makes a substantial contribution to help our patients through efficiency and effectiveness of the translational process. For more information, visit: http://www.tgen.org. Follow TGen on Facebook, LinkedIn and Twitter @TGen.

Press Contact:

Steve Yozwiak
TGen Senior Science Writer
602-343-8704
syozwiak@tgen.org

The Translational Genomics Research Institute

Related Glioblastoma Articles:

Brain cancer discovery reveals clues in quest for new therapies
Researchers at the University of Edinburgh have pinpointed two key molecules that drive the growth of an aggressive type of adult brain cancer.
Immunotherapy for glioblastoma well tolerated; survival gains observed
A phase one study of 11 patients with glioblastoma who received injections of an investigational vaccine therapy and an approved chemotherapy showed the combination to be well tolerated while also resulting in unexpectedly significant survival increases, researchers at the Duke Cancer Institute report.
Glioblastoma patients may benefit from a vaccine-chemotherapy combination
A vaccine targeting cytomegalovirus (CMV) antigen pp65, combined with high-dose chemotherapy (temozolomide), improved both progression-free survival and overall survival for a small group of glioblastoma (GBM) patients.
Case comprehensive cancer center analyzes brain tumor data, doubles known risk factors for glioma
A massive new study involving blood samples from over 30,000 individuals has identified 13 new genetic risk factors for glioma, the most common type of malignant brain tumor in adults.
Glioblastoma clinical trial shows combined therapy extends life for patients 65 and older
Treating older patients who have malignant brain cancer with the chemotherapy drug temozolomide plus a short course of radiation therapy extends survival by two months compared to treating with radiation alone, show clinical trial results published in the New England Journal of Medicine.
Revolutionary approach for treating glioblastoma works with human cells
UNC-Chapel Hill researchers describe how human stem cells, made from human skin cells, can hunt down and kill human brain cancer, a critical and monumental step toward clinical trials -- and real treatment.
Researchers discover potential new target for treating glioblastoma
Scientists have found a way to inhibit the growth of glioblastoma, a type of brain cancer with low survival rates, by targeting a protein that drives growth of brain tumors, according to research from the Peter O'Donnell Jr.
Cell of origin affects malignancy and drug sensitivity of brain tumors
Patients with glioblastoma have very poor prognosis since there are no effective therapies.
A new prognostic classification may help clinical decision-making in glioblastoma
New research shows that taking molecular variables into account will improve the prognostic classification of the lethal brain cancer called glioblastoma (GBM).
Inhibiting a DNA-repairing protein in brain could be key to treating aggressive tumors
Researchers at the University of Leeds found that inhibiting this protein, called RAD51, helped increase the effectiveness of radiotherapy in killing off glioblastoma cells in the lab.

Related Glioblastoma Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".