Sharks' hunting ability destroyed under climate change

November 12, 2015

The hunting ability and growth of sharks will be dramatically impacted by increased CO2 levels and warmer oceans expected by the end of the century, a University of Adelaide study has found.

Published today in the journal Scientific Reports, marine ecologists from the University of Adelaide's Environment Institute report long-term experiments that show warmer waters and ocean acidification will have major detrimental effects on sharks' ability to meet their energy demands, with the effects likely to cascade through entire ecosystems.

The laboratory experiments, studying Port Jackson sharks and including large tanks with natural habitat and prey, found embryonic development was faster under elevated temperatures. But the combination of warmer water and high CO2 increased the sharks' energy requirement, reduced metabolic efficiency and removed their ability to locate food through olfaction (smelling). These effects led to marked reductions in growth rates of sharks.

"In warmer water, sharks are hungrier but with increased CO2 they won't be able to find their food," says study leader Associate Professor Ivan Nagelkerken, Australian Research Council (ARC) Future Fellow.

"With a reduced ability to hunt, sharks will no longer be able to exert the same top-down control over the marine food webs, which is essential for maintaining healthy ocean ecosystems."

PhD student Jennifer Pistevos, who carried out the study, says the Port Jackson is a bottom-feeding shark that primarily relies on its ability to smell to find food. Under higher CO2, the sharks took a much longer time to find their food, or didn't even bother trying, resulting in considerably smaller sharks.

Most research studying the effects of ocean acidification and climate change on fish behaviour has concentrated on small fish prey. Long-term studies on the behaviour and physiology of large, long-lived predators are largely lacking.

Fellow University of Adelaide marine ecologist Professor Sean Connell says the results of the study provide strong support for the call to prevent global overfishing of sharks.

"One-third of shark and ray species are already threatened worldwide because of overfishing," Professor Connell says. "Climate change and ocean acidification are going to add another layer of stress and accelerate those extinction rates."
-end-
Media Contact:

Associate Professor Ivan Nagelkerken
ARC Future Fellow
Southern Seas Ecology Labs
School of Biological Sciences
Environment Institute
The University of Adelaide
Phone:61-8-8313-4137
Mobile:61-477-320-551
ivan.nagelkerken@adelaide.edu.au

Professor Sean Connell
Professor
Southern Seas Ecology Labs
School of Biological Sciences
Environment Institute
The University of Adelaide
Phone: 61-8-8313-6125
Mobile: 61-(0)4005-18403
sean.connell@adelaide.edu.au

Robyn Mills
Media Officer
The University of Adelaide
Phone: 61-8-8313-6341
Mobile: 61-(0)410-689-084
robyn.mills@adelaide.edu.au

University of Adelaide

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.