Nav: Home

Fossilized bees were finicky pollen collectors

November 12, 2015

The ancestors of honeybees, living 50 million years ago, were fairly choosy when it came to feeding their offspring. This is shown in a study sponsored by the University of Bonn, which also included researchers from Austria and the United States. According to the study, the pollen that these insects collected for their larvae always originated from the same plants. When it came to their own meals, they were less picky - on their collection flights, they ate pretty much everything that turned up in front of their mouth parts. The findings from this study have now appeared in the "Current Biology" trade journal.

The paleontologists studied fossilized bees from two different locations: the Messel Pit near Darmstadt and Eckfeld Maar in the Vulkaneifel. Both are former volcanic crater lakes, so deep that there was no oxygen to be found at the bottom. Any animals or plants that fell into the water were thus outstandingly preserved in the bottom sediment.

Nearly 50 million years ago, numerous bees met this very fate. Many of them were very well preserved in the oil shale rock. "For the first time, we are taking advantage of this circumstance in order to get a closer look at the pollen on the bees' bodies," explains Dr. Torsten Wappler. Dr. Wappler, an associate professor at the Steinmann Institute for Geology, Mineralogy and Paleontology at the University of Bonn, is the first author of the study.

Bees were both generalists and specialists

In their analyses, the researchers noticed a strange pattern: the pollen near the hymenoperans' heads, chests and abdomens came from completely different plants. The pollen on their back legs, on the other hand, mainly came from evergreen bushes, which produce very similar blossoms.

The back legs of the long-extinct hymenoptera featured characteristic structures. The bees used them as transport containers (today's honeybees have a very similar arrangement on their back legs). The insects used their front legs to comb pollen grains out of their body hair, and then transferred the pollen to their back legs.

However, this only worked if their front legs could reach the pollen easily - we human beings have trouble scratching between our shoulder blades, after all. "The bushes where the worker bees collected food for their larvae all had a similar blossom structure," explains Dr. Wappler. "After they visited those blossoms, the pollen mainly stuck to parts of their bodies where it was easy to transfer to their legs."

The prehistoric bees seemed to know which plants would give them a successful harvest, and they mainly targeted those blossoms. If they got hungry on the way, they landed on plants along their flight path and sipped the nectar. The pollen that stuck to their bodies shows how undiscriminating they were in their snacking.

Searching for food without wasting time

"This was a good strategy for the bees," points out Dr. Wappler. "When they were looking for food for the larvae, they visited blossoms that offered a high yield with little effort. On the way there, on the other hand, they ate whatever they happened to find. So they didn't waste any time looking for especially delicious or nutritious food."

There was one thing that especially surprised the researchers: the bees from Eckfeld Maar were 44 million years old, while those from Messel were 48 million years old. Nonetheless, they had very similar pollen patterns on their legs and bodies. Even among the precursors of today's bumblebees, the distribution was very similar. The dual strategy thus seems to have been common in various species, and stayed consistent for millions of years.

Even today, our honeybees use a similar approach. It is possible that the very first bees, which populated the earth about 100 million years ago, did the same thing. "Unfortunately there are no finds from that era that would allow us to analyze the pollen," says Dr. Wappler.
-end-
Publication: Torsten Wappler, Conrad C. Labandeira, Michael S. Engel, Reinhard Zetter and Friðgeir Grímsson: Specialized and generalized pollen-collection strategies in an ancient bee lineage; "Current Biology" trade journal; DOI: http://dx.doi.org/10.1016/j.cub.2015.09.021

Contact:

PD Dr. Torsten Wappler
Steinmann Institute for Geology, Mineralogy and Paleontology
University of Bonn
Tel. ++49-228-73-4682
Email: twappler@uni-bonn.de

University of Bonn

Related Bees Articles:

To buzz or to scrabble? To foraging bees, that's the question
A team of UA biologists has discovered that for a hard-working bumblebee, foraging for pollen versus nectar is very different -- and tougher than you might think.
Nicotine enhances bees' activity
Nicotine-laced nectar can speed up a bumblebee's ability to learn flower colors, according to scientists at Queen Mary University of London (QMUL).
Scientists say agriculture is good for honey bees
Scientists with the University of Tennessee Institute of Agriculture evaluated the impacts of row-crop agriculture, including the traditional use of pesticides, on honey bee health.
Honey bees have sharper eyesight than we thought
Research conducted at the University of Adelaide has discovered that bees have much better vision than was previously known, offering new insights into the lives of honey bees, and new opportunities for translating this knowledge into fields such as robot vision.
Overuse of antibiotics brings risks for bees -- and for us
Researchers from The University of Texas at Austin have found that honeybees treated with a common antibiotic were half as likely to survive the week after treatment compared with a group of untreated bees, a finding that may have health implications for bees and people alike.
Flies and bees act like plant cultivators
Pollinator insects accelerate plant evolution, but a plant changes in different ways depending on the pollinator.
Bees can learn to use a tool by observing others
Simply by watching other bees, bumblebees can learn to use a novel tool to obtain a reward, a new study reveals.
Stingless bees have their nests protected by soldiers
Attacks by robber bees result in the evolution of larger guard bees and thus promote the division of labor in the hive.
Save the bees? There's an app for that
A new mobile app can calculate the crop productivity and pollination benefits of supporting endangered bees.
Sweat bees on hot chillies: Native bees thrive in traditional farming, securing good yield
Farming doesn't always have to be harmful to bees: Even though farmers on the Mexican peninsula of Yucatan traditionally slash-and-burn forest to create small fields, this practice can be beneficial to sweat bees by creating attractive habitats.

Related Bees Reading:

The Beekeeper's Bible: Bees, Honey, Recipes & Other Home Uses
by Richard Jones (Author), Sharon Sweeney-Lynch (Author)

The Bees in Your Backyard: A Guide to North America's Bees
by Joseph S. Wilson (Author), Olivia J. Messinger Carril (Author)

Bees: A Honeyed History
by Piotr Socha (Author)

Buzz: The Nature and Necessity of Bees
by Thor Hanson (Author)

100 Plants to Feed the Bees: Provide a Healthy Habitat to Help Pollinators Thrive
by The Xerces Society (Author)

The Bee: A Natural History
by Noah Wilson-Rich (Author), Kelly Allin (Contributor), Norman Carreck (Contributor), Andrea Quigley (Contributor)

Honeybee Democracy
by Thomas D. Seeley (Author)

Honey Bee Biology and Beekeeping, Revised Edition
by Dewey M. Caron (Author), Lawrence John Connor (Author), Robert G. Muir (Editor), Ann Harman (Editor), David Heskes (Editor), Jon Zawislak (Editor)

Mason Bee Revolution: How the Hardest Working Bee Can Save the World - One Backyard at a Time
by Dave Hunter (Author), Jill Lightner (Author)

The Secret Life of Bees
by Sue Monk Kidd (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#504 The Art of Logic
How can mathematics help us have better arguments? This week we spend the hour with "The Art of Logic in an Illogical World" author, mathematician Eugenia Cheng, as she makes her case that the logic of mathematics can combine with emotional resonance to allow us to have better debates and arguments. Along the way we learn a lot about rigorous logic using arguments you're probably having every day, while also learning a lot about our own underlying beliefs and assumptions.