Nav: Home

Combination therapy promising against blindness-causing bacterial keratitis

November 12, 2018

Washington, DC - November 12, 2018 - Multidrug-resistant bacterial infections of the cornea are a leading cause of blindness and cannot be effectively managed with current ophthalmic antibiotics. A team of investigators has now devised a combination therapy that largely circumvents resistance, and quickly and effectively eradicated bacterial keratitis in 70 percent of animal models treated. The research is published in Antimicrobial Agents and Chemotherapy, a journal of the American Society for Microbiology.

Staphylococcus aureus and Pseudomonas aeruginosa are the leading causes of bacterial keratitis, an infection of the cornea. Fast, effective antimicrobial treatment is required to prevent scarring, corneal perforation, and/or endophthalmitis, an inflammation of the eye's interior.

"I have witnessed first-hand patients who have failed all commercially available antibiotic therapies who, in the face of rapidly deteriorating vision, are desperate for effective therapies," said corresponding author Rachel Wozniak, MD, PhD, Assistant Professor of Ophthalmology, University of Rochester Medical Center, Rochester, NY. "Unfortunately, this occurs all too often, as resistance to levofloxacin, the last antibiotic approved for this indication, can be as high as 72 percent for some bacterial infections."

The investigators chose to develop a combination therapy with existing antimicrobials rather than a new compound because they anticipated that doing so would be considerably faster, said co-corresponding author Paul Dunman, PhD, Associate Professor of Microbiology and Immunology, University of Rochester Medical Center, Rochester NY.

"Our discovery platform was based on polymyxin B/trimethoprim (PT), a currently available ophthalmic antibiotic used to treat mild ocular infections such as conjunctivitis, but with narrow use in serious infections due to its slow-acting antimicrobial activity," said Dr. Wozniak. "Using high throughput screening of FDA approved drugs in combination with PT, we identified PT plus rifampicin as a lethal antibacterial combination toward both drug-resistant S. aureus and Pseudomonas aeruginosa, two predominant causes of bacterial corneal infections."

The improved activities of the combination is almost certainly due to each component having an independent mechanism of antimicrobial action, according to the report. Rifampicin inhibits bacterial DNA transcription by binding to the enzyme that assembles ribonucleotide bases into RNA. Trimethoprim inhibits bacterial DNA synthesis. Polymyxin B acts as a detergent, disrupting the oily outer and inner membranes primarily of Gram-negative bacteria--a category which includes both S. aureus and P. aeruginosa.

That membrane-disruptive activity of polymyxin B may also improve antibiotic penetration, thereby adding to the combination's effectiveness, the investigators speculate.

The combination has shown a low rate of development of spontaneous resistance, which is likely is due to the need for multiple simultaneous mutations to evade the combination's multiple modes of attack, according to the report. This common strategy has been used against resistance notably in HIV, malaria, and tuberculosis.

"While there may be unforeseen effects of combination drugs with respect to toxicity, both rifampicin and PT are currently FDA-approved drugs with favorable safety profiles, and thus their combination may provide a significant advantage for further drug development," according to the report.

In preclinical testing on mouse models, the combination therapy eradicated infections in 70 percent of treated animals, according to the report.

Globally, bacterial keratitis is a leading cause of blindness, with two million new cases annually. In the United States, overnight contact lens wear is the leading cause of keratitis, and an estimated 30,000 new cases occur annually.
-end-
The American Society for Microbiology is the largest single life science society, composed of more than 30,000 scientists and health professionals. ASM's mission is to promote and advance the microbial sciences.

ASM advances the microbial sciences through conferences, publications, certifications and educational opportunities. It enhances laboratory capacity around the globe through training and resources. It provides a network for scientists in academia, industry and clinical settings. Additionally, ASM promotes a deeper understanding of the microbial sciences to diverse audiences.

American Society for Microbiology

Related Combination Therapy Articles:

Combination approach improves power of new cancer therapy
An international research team has found a way to improve the anti-cancer effect of a new medicine class called 'Smac mimetics.'
Combination therapy targets genetic mutation found in many cancers
A study at The University of Texas MD Anderson Cancer Center has shown promise for effective treatment of therapy-resistant cancers caused by a mutation of the RAS gene found in many cancers.
Combination therapy could provide new treatment option for ovarian cancer
UCLA study identifies a potential test that may help select patients for whom combination therapy could be most effective.
New colorectal cancer targeted therapy combination shows promise
New SWOG study results show significantly better outcomes for patients with a treatment-resistant form of metastatic colorectal cancer when the BRAF inhibitor vemurafenib is added to a standard treatment.
Immunotherapy, gene therapy combination shows promise against glioblastoma
In a new University of Michigan study, gene therapy deployed with immune checkpoint inhibitors demonstrates potential benefit for devastating brain cancer.
Combination immune therapy shows promise against Hodgkin lymphoma
The combination of two new drugs that harness the body's immune system is safe and effective, destroying most cancer cells in 64 percent of patients with recurrent Hodgkin lymphoma, according to the results of an early-phase study.
Combination therapy improved chemoresistance in ovarian cancer
Researchers at The Wistar Institute have shown that a class of drugs called bromodomain and extraterminal domain (BET) inhibitors can be used in combination with cisplatin to reduce a tumor's resistance to chemotherapy, and therefore increase the effectiveness of the drug and improve long-term survival rates.
Study identifies potential combination therapy for ovarian cancer
A new study has identified an effective combination therapy for treating ovarian cancer cells.
The ART of combination therapy thwarts HIV infection
In an attempt to move beyond the current standard of care for HIV, which requires lifetime treatment and results in adverse effects like gut damage, researchers have coupled an antibody with standard-of-care antiretroviral treatment, finding that the duo kept virus levels very low -- almost undetectable -- in nonhuman primates.
Combination therapy shows promise in fighting neuroblastoma
A study by a multidisciplinary team of researchers from The Saban Research Institute of Children's Hospital Los Angeles sheds further light on the role of the cytokine TGFβ1 in the growth of neuroblastoma, and suggests the possibility for a small molecule drug/antibody combinatorial therapy to treat this cancer.

Related Combination Therapy Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...