New spin directions in pyrite an encouraging sign for future spintronics

November 12, 2019

A Monash University study revealing new spin textures in pyrite could unlock these materials' potential in future spintronics devices.

The study of pyrite-type materials provides new insights and opportunities for selective spin control in topological spintronics devices.

Seeking new spin in topological materials

Topological materials have exciting potential for next-generation, ultra-low energy electronics, including thermoelectric and spintronic devices.

However, a restriction on the use of such materials in spintronics has been that all topological materials studied thus far have spin states that lie parallel to the plane of the material, while many/most/all practical spintronic devices would require out-of-plane spin states.

Generating and manipulating out-of-plane spins without applying an external electric or magnetic field has been a key challenge in spintronics.

The new Monash Engineering study demonstrates for the first time that pyrite-type crystals can host unconventional energy- and direction-dependent spin textures on the surface, with both in-plane and out-of-plane spin components, in sharp contrast to spin textures in conventional topological materials.

"A number of pyrite-type materials have previously been theoretically predicted to show the desired out-of-plan spin textures," explains lead author Dr Yuefeng Yin, in Monash Engineering's Computational Materials Lab.

Pyrite (colloquially known as 'fool's gold') is an iron-sulfide mineral that displays multiple internal planes of electronic symmetry.

"The presence of strong local symmetry protects out-of-plan spin states," explains Yuefeng, "so we decided to look closer at some of these crystals."

The unconventional spin texture discovered opens new possibilities for the necessary task of injecting or detecting out-of-plane spin component in future topological spintronic devices.

THE STUDY

Selective control of surface spin current in topological pyrite-type OsX2 (X?=?Se, Te) crystals was published in NPJ Quantum Materials in August 2019 (DOI 10.1038/s41535-019-0186-8).

Using first-principles calculations, the Monash team separated surface spin states by their interactions with spin states in the bulk of the material, resulting in highly anisotropic but tunable behaviour.

As well as funding from the Australian Research Council (Centre of Excellence and ARC Laureates funding) the authors gratefully acknowledge computational support from the Monash Campus Cluster, NCI computational facility and Pawsey Supercomputing Facility.

THE LINK BETWEEN SYMMETRY AND TOPOLOGICAL MATERIALS

The presence of strong, local symmetry provides topological robustness to spin states, and symmetry is therefore a strong predictor of topological behaviour, so that studying these phenomena in pyrite crystals should provide clues towards discovery of many other new topological materials.

Topological insulators are novel materials that behave as electrical insulators in their interior, but can carry a current along their edges. Unlike a conventional electrical path, such topological edge paths can carry electrical current with near-zero dissipation of energy, meaning that topological transistors can switch without burning energy. Topological materials are investigated within FLEET's Research theme 1, seeking ultra-low resistance electronic paths with which to create a new generation of ultra-low energy electronics.
-end-
FLEET is an Australian Research Council-funded research centre bringing together over a hundred Australian and international experts to develop a new generation of ultra-low energy electronics.

MORE INFORMATION

* Contact lead author Dr Yuefeng Yin Yuefeng.Yin@monash.edu

* Contact group leader A/Prof Nikhil Medhekar Nikhil.Medhekar@monash.edu

* Follow FLEET at @FLEETCentre

* Visit FLEET.org.au

ARC Centre of Excellence in Future Low-Energy Electronics Technologies

Related Spintronics Articles from Brightsurf:

A four-state magnetic tunnel junction for novel spintronics applications
Researchers have introduced a new type of MTJ with four resistance states, and successfully demonstrated switching between the states with spin currents.

Ultrafast electrons in magnetic oxides: A new direction for spintronics?
Special metal oxides could one day replace semiconductor materials that are commonly used today in processors.

Efficient valves for electron spins
Researchers at the University of Basel in collaboration with colleagues from Pisa have developed a new concept that uses the electron spin to switch an electrical current.

Magnetic memory states go exponential
Researchers showed that relatively simple structures can support exponential number of magnetic states - much greater than previously thought - and demonstrated switching between the states by generating spin currents.

New breakthrough in 'spintronics' could boost high speed data technology
Scientists have made a pivotal breakthrough in the important, emerging field of spintronics -- which could lead to a new high speed energy efficient data technology.

A path to new nanofluidic devices applying spintronics technology
Japanese scientists have elucidated the mechanism of the hydrodynamic power generation using spin currents in micrometer-scale channels, finding that power generation efficiency improves drastically as the size of the flow is made smaller.

Extensive review of spin-gapless semiconductors: Next-generation spintronics candidates
An Australian has published an extensive review of spin-gapless semiconductors (SGSs), a new class of 'zero bandgap' materials which have fully spin polarised electrons and holes, and first proposed in 2008 by the review team's lead, Professor Xiaolin Wang (University of Wollongong).

Graphene and 2D materials could move electronics beyond 'Moore's Law'
A team of researchers based in Manchester, the Netherlands, Singapore, Spain, Switzerland and the USA has published a new review on a field of computer device development known as spintronics, which could see graphene used as building block for next-generation electronics.

Toward a more energy-efficient spintronics
In order to generate and detect spin currents, spintronics traditionally uses ferromagnetic materials whose magnetization switching consume high amounts of energy.

Computing with molecules: A big step in molecular spintronics
Chemists and physicists at Kiel University joined forces with colleagues from France, and Switzerland to design, deposit and operate single molecular spin switches on surfaces.

Read More: Spintronics News and Spintronics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.