Researchers find new way to target childhood cancer

November 12, 2019

An Australian-led international research effort has broken fresh ground in the race to find more effective treatments for the childhood cancer neuroblastoma, by uncovering a new and as-yet unexploited target in cancer cells that therapeutic drugs can be aimed at.

Neuroblastoma kills more children under the age of 5 than any other cancer. One of the factors that makes neuroblastoma 'high risk' in a child is high levels of a molecule known as the MYCN

oncogene. But despite knowing the importance of MYCN, scientists have not found a drug capable of targeting it and cancelling out its effects. Instead, the focus has been on finding molecules that work hand-in-hand with MYCN, that may prove easier to target.

The new research, led by scientists at Children's Cancer Institute in collaboration with scientists in the US, Europe and China, and published this month in Nature Communications*, has identified one such target molecule. By analysing hundreds of tumour samples of children with neuroblastoma, the researchers found that high levels of a long non-coding RNA (called 'lncNB1') is a marker of poor prognosis; in other words, children whose tumours have high levels of lncNB1 tend to do worse than other children with neuroblastoma. Excitingly, the scientists were not only able to show that lncNB1 actively promotes the growth and survival of neuroblastoma cells, but also that 'knocking down' or inhibiting the expression of this molecule causes neuroblastoma cells to die, and tumours to stop growing and regress in mice with the disease.

"This research opens the door to developing new targeted therapies that we hope can proceed to clinical trial in children with high-risk neuroblastoma," said Associate Professor Tao Liu, Group Leader at Children's Cancer Institute. "Targeted therapies are designed to specifically target cancer cells and not healthy cells, and so are much safer as well as more effective than conventional chemotherapy. They represent a significant step forward and are the way of the future."

In the last few decades, a number of protein-coding genes have been shown to work closely with MYCN to promote the aggressive growth of tumours. However, very little is known about the role of long non-coding RNA molecules in MYCN-driven cancers. As well as uncovering the role of lncNB1, the current study also found that several other long non-coding RNAs are over-expressed in MYC-driven neuroblastoma cells, raising the possibility that more therapeutic targets could be identified in the near future.

"Continued dedicated research will lead to the development of improved treatments for children with cancer," said A/Professor Liu. "Ultimately, this means we will not only be able to cure more children, but also give survivors a higher quality of life."
-end-
* Liu, P.Y., Tee, A.E., Milazzo, G. et al. The long noncoding RNA lncNB1 promotes tumorigenesis by interacting with ribosomal protein RPL35. Nat Commun 10, 5026 (2019) doi:10.1038/s41467-019-12971-3

About Children's Cancer Institute

Originally founded by two fathers of children with cancer in 1976, Children's Cancer Institute is the only independent medical research institute in Australia wholly dedicated to research into the causes, prevention and cure of childhood cancer. More than 40 years on, our vision remains unchanged - to save the lives of all children with cancer and to eliminate their suffering. The Institute has grown to now employ nearly 300 researchers, operational staff and students, and has established a national and international reputation for scientific excellence. Our focus is on translational research, and we have an integrated team of researchers and clinician scientists who work together in partnership to discover new treatments which can be progressed from the lab bench to the beds of children on wards in our hospitals as quickly as possible. More at http://www.ccia.org.au

Children's Cancer Institute Australia

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.