Researchers strengthen weakest link in manufacturing strong materials

November 12, 2019

Industrial and automotive machinery, such as automotive engine parts, contain materials that are, heat-, wear-, and corrosion-resistant. They are known as "super engineering plastics," and they continue to revolutionize manufacturing processes. While they are actually plastic, they are much stronger than the typical plastics we encounter in everyday life. These materials, however, create a corrosive environment during manufacturing.

That's changing with a new innovation developed by a team of researchers based in Japan. They designed a new method to improve the wear and corrosion resistance of the machines that produce super engineering plastics. The researchers published their results on August 27 in npj Materials Degradation, a Nature journal.

"The global market for super engineering plastics has grown in recent years because they have remarkably high-temperature resistance, good mechanical strength and exceptional chemical and solvent resistance in high-temperature environments," said Kenta Yamanaka, paper author and associate professor of deformation processing at the Institute for Materials Research at Tohoku University. "However, during the manufacturing process, the reciprocating screw in the manufacturing apparatus usually suffers from frequent wear loss because the semi-fluid raw materials commonly contain a large number of glass fibers as reinforcement."

Super engineering plastics also decompose into sulfuric gas, inducing a highly corrosive environment in addition to the high physical wear conditions. The screws in the manufacturing machines cannot withstand such an environment for long.

To correct this issue, Yamanaka and the researchers studied a steel alloy known as high-speed steel, which is currently mainly used for tools. According to Yamanaka, the steel has outstanding mechanical properties at room and elevated temperatures, but it's vulnerable to corrosion.

The researchers used an alloy based on high-speed steel and treated it with copper.

"The wear and corrosion resistance of steels generally show a trade-off relationship," Yamanaka said. "In this study, we demonstrate that adding trace copper to high-hardness steels significantly improves the corrosion resistance of the alloys, resulting in an excellent combination of wear and corrosion resistance."

After analyzing the alloy through imaging and experimental studies, the researchers found that they had successfully developed a highly wear and corrosion-resistant steel. Next, they plan to further investigate the alloy's properties for application in other fields.
-end-


Tohoku University

Related Corrosion Articles from Brightsurf:

Story Tips: Remote population counting, slowing corrosion and turning down the heat
ORNL Story tips: Remote population counting, slowing corrosion and turning down the heat

Cement-free concrete beats corrosion and gives fatbergs the flush
Researchers from RMIT University have developed an eco-friendly zero-cement concrete, which all but eliminates corrosion.

Sunflower oil shows unexpected efficiency in corrosion prevention
Sunflower oil, which is found in almost every home, can be used not only in cooking, everyday life and cosmetology - it will help avoid complications (gas hydrates and corrosion) during oil and gas production.

Waterborne polyurea/urethanes significantly reduce hydrate growth rate in pipelines
A series of inhibitors has appeared with new reagents based on water-soluble polyurethanes.

Sulfonated chitosan studied as potential biodegradable corrosion inhibitor
Hydrate formation has long been a problem for hydrocarbon production in the Arctic.

Does graphene cause or prevent the corrosion of copper? New study finally settles the debate
Graphene has attracted the interest of researchers in recent years because, despite its apparent anti-corrosive properties, its proximity was seen to increase the corrosion of copper.

Current model for storing nuclear waste is incomplete
The materials the United States and other countries plan to use to store high level nuclear waste will likely degrade faster than anyone previously knew, because of the way those materials interact, new research shows.

Marine biology: Acidified oceans may corrode shark scales
Prolonged exposure to high carbon dioxide (acidified) seawater may corrode tooth-like scales (denticles) covering the skin of puffadder shysharks, a study in Scientific Reports suggests.

Finding out the factors that most influence the steel corrosion in reinforced concrete
This process causes structures to deteriorate internally and can even cause buildings to collapse.

Researchers strengthen weakest link in manufacturing strong materials
Industrial and automotive machinery, such as automotive engine parts, contain materials that are, heat-, wear-, and corrosion-resistant.

Read More: Corrosion News and Corrosion Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.