New exploration method for geothermal energy

November 12, 2019

Where to drill? This is the basic question in the exploration of underground energy resources, such as geothermal energy. Water in rocks flows along permeable pathways, which are the main target for geothermal drilling. Borehole, core and micro-earthquake data show that the pathways are spatially connected, permeable structures, such as fractures or faults in the rock. However, the geothermal potential of these structures cannot be fully exploited with the techniques available to date.

A research team led by Maren Brehme, research scientist at the GFZ German Research Centre for Geosciences until August 2019 and now Assistant Professor at the TU Delft, presents a new method for locating potential drilling sites that are covered by water. "In the future, our method will make it possible to map geological structures under water and draw conclusions about the inflow from surrounding layers," says Maren Brehme.

Since geothermal fields are often located in volcanic areas, they usually occur near or below crater lakes. "However, these lakes hide structures that are important for geothermal energy," explains Maren Brehme. "In the study, we showed that volcanic lakes such as the Lake Linau in Indonesia, which we investigated, have so-called 'sweet spots', deep holes with fluid inflow from the surrounding rock." The method is not limited to volcanic lakes though. It can also be applied to other underwater areas.

*Novel combination of two technologies brings success*

The new approach combines bathymetry measurements with geochemical profiles. In this study, bathymetry (from Greek bathýs 'deep' and métron 'measure') is used to map fault zones and geyser-like holes in the lake floor. Its most important feature is the echo sounder. The geochemical profiles from data on temperature, salinity, density and pH at different depths show areas in the lake with inflows from the surrounding geothermal reservoir. The combination allows the distinction between permeable and non-permeable structures, which was previously not possible. With this method, promising locations for drilling can be located more precisely.

The related field work took place in 2018 during an expedition to Lake Linau led by Maren Brehme. It was part of the long-standing GFZ cooperation with Indonesian partners funded by the German Federal Ministry of Education and Research. The Lake Linau is only a few kilometres from the Lahendong site, where the first geothermal low-temperature demonstration power plant in Indonesia, jointly developed by GFZ and Indonesian partners, was successfully commissioned in 2017.
-end-


GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

Related Geothermal Energy Articles from Brightsurf:

First measurement of electron energy distributions, could enable sustainable energy technologies
To answer a question crucial to technologies such as energy conversion, a team of researchers at the University of Michigan, Purdue University and the University of Liverpool in the UK have figured out a way to measure how many 'hot charge carriers' -- for example, electrons with extra energy -- are present in a metal nanostructure.

Mandatory building energy audits alone do not overcome barriers to energy efficiency
A pioneering law may be insufficient to incentivize significant energy use reductions in residential and office buildings, a new study finds.

Injection strategies are crucial for geothermal projects
The fear of earthquakes is one of the main reasons for reservations about geothermal energy.

Geothermal energy: Drilling a 3,000 meters deep well
Destabilising the precarious equilibrium at depth with geothermal wells may reactivate the geological layers causing earthquakes.

Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.

New exploration method for geothermal energy
Where to drill? This is the basic question in the exploration of underground energy resources, such as geothermal energy.

New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.

How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.

Shifts to renewable energy can drive up energy poverty, PSU study finds
Efforts to shift away from fossil fuels and replace oil and coal with renewable energy sources can help reduce carbon emissions but do so at the expense of increased inequality, according to a new Portland State University study

Lessons from Pohang: Solving geothermal energy's earthquake problem
A geothermal energy project triggered a damaging earthquake in 2017 in South Korea.

Read More: Geothermal Energy News and Geothermal Energy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.