Nav: Home

Using sound waves to remotely target drugs to tumors

November 12, 2019

WASHINGTON, D.C., November 12, 2019 -- The lack of a clinically viable method to track and direct cancer drugs to tumors is a big problem for targeted therapeutics.

But a new ultrasonic method proposed by biomedical engineers from Qifa Zhou's team at the University of Southern California in Los Angeles could enable acoustic control and real-time tracking of drug release within the body. The researchers report on their manipulation of ultrasonic waves to pinpoint drug delivery in Applied Physics Letters, from AIP Publishing.

"In conventional drug delivery, tissue is examined ex vivo under the microscope, or radioactive materials are used to trace drugs in vivo. We propose a new way to image and move the drug precisely inside the human body by combining the new plane wave imaging method with a focused ultrasound transducer," said post-doctoral researcher Xuejun Qian.

Accurate drug delivery is crucial to ensure tumor obliteration, while avoiding the toxic side effects of cancer therapeutics on healthy tissue. Ultrasound is a popular method for noninvasively imaging inside the body. But because the conventional method lacks sensitivity, it has not been used in drug delivery previously. Zhou's team adapted a new, ultrafast ultrasound method that eliminates background noise to accurately track a drug delivery vehicle within a phantom blood vessel.

Hanmin Peng, a visiting scholar from Nanjing University of Aeronautics & Astronautics, China, and co-workers pumped water through a narrow silicone tube to mimic blood flow through a blood vessel. They placed the tube beneath real pig tissue and imaged across this to make the setup more realistic. Microbubbles, tiny pockets of air, that can be used as vehicles for drug delivery were introduced into the fake blood vessels.

In recent years, there's been much excitement over the ability to focus sound waves into "acoustic tweezers," which can manipulate particles. Zhou's team applied a focused ultrasound transducer to trap the microbubbles identified by their ultrafast imaging system.

The team predicted microbubble motion and calculated the acoustic radiation forces required to trap and move the bubbles to specific areas in the phantom blood vessel.

By balancing the acoustic radiation force from the transducer, the team moved the trapped microbubbles to a specific location on the tube wall and turned up the acoustic power to burst the bubbles.

Ultrasound waves vibrate the air contained within microbubbles, which enabled Peng and co-workers to use their novel ultrafast ultrasound imaging system to precisely track the microbubbles at depths of up to 10 millimeters within the tissue. They hope this combination of ultrasound tracking and targeting can be translated to noninvasively directing drug-containing microbubbles to blood vessels adjacent to tumor locations in the body.

"We want to try in vivo studies on rat or rabbit to see whether the proposed method can monitor and release microbubble-based drug delivery in a real body," said Qian. "We hope to further improve the imaging resolution, sensitivity and speed within a real case, and if it works, the long-term goal would be to move towards a human study."
-end-
The article, "Ultrafast ultrasound imaging in acoustic microbubble trapping," is authored by Hanmin Peng, Xuejun Qian, Linli Mao, Laiming Jiang, Yizhe Sun and Qifa Zho. The article will appear in Applied Physics Letters on Nov. 12, 2019 (DOI: 10.1063/1.5124437). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/1.5124437.

ABOUT THE JOURNAL

Applied Physics Letters features rapid reports on significant discoveries in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See https://aip.scitation.org/journal/apl.

American Institute of Physics

Related Ultrasound Articles:

World's first ultrasound biosensor created in Australia
Most implantable monitors for drug levels and biomarkers invented so far rely on high tech and expensive detectors such as CT scans or MRI.
Ultrasound can make stronger 3D-printed alloys
A study just published in Nature Communications shows high frequency sound waves can have a significant impact on the inner micro-structure of 3D printed alloys, making them more consistent and stronger than those printed conventionally.
Full noncontact laser ultrasound: First human data
Conventional ultrasonography requires contact with the patient's skin with the ultrasound probe for imaging, which causes image variability due to inconsistent probe contact pressure and orientation.
Ultrasound aligns living cells in bioprinted tissues
Researchers have developed a technique to improve the characteristics of engineered tissues by using ultrasound to align living cells during the biofabrication process.
Ultrasound for thrombosis prevention
Researchers established real-time ultrasonic monitoring of the blood's aggregate state using the in vitro blood flow model.
Ultra ultrasound to transform new tech
A new, more sensitive method to measure ultrasound may revolutionize everything from medical devices to unmanned vehicles.
Shoulder 'brightness' on ultrasound may be a sign of diabetes
A shoulder muscle that appears unusually bright on ultrasound may be a warning sign of diabetes, according to a new study.
Ultrasound-firewall for mobile phones
Mobile phones and tablets through so-called audio tracking, can be used by means of ultrasound to unnoticeably track the behaviour of their users: for example, viewing certain videos or staying in specific rooms and places.
Designing a new material for improved ultrasound
Development of a theoretical basis for ultrahigh piezoelectricity in ferroelectric materials led to a new material with twice the piezo response of any existing commercial ferroelectric ceramics, according to an international team of researchers from Penn State, China and Australia.
Atomic structure of ultrasound material not what anyone expected
Lead magnesium niobate (PMN) is a prototypical
More Ultrasound News and Ultrasound Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.