Nav: Home

Individual climate models may not provide the complete picture

November 12, 2019

Equilibrium climate sensitivity -- how sensitive the Earth's climate is to changes in atmospheric carbon dioxide -- may be underestimated in individual climate models, according to a team of climate scientists.

"Probabilistic estimates of climate system properties often rely on the comparison of model simulation to observed temperature records and an estimate of the internal climate variability," the researchers report in Geophysical Research Letters. If the internal climate variability is wrong, then the probabilistic estimates will be wrong and climate predictions could miss the mark.

"We're looking at temperature changes in the tropics and in the temperate northern hemisphere at higher latitudes," said Chris E. Forest, professor of climate dynamics at Penn State. "We're focusing on simple single equations and using time series analysis because for this to work, we need to make thousands of runs of the models."

That requirement of thousands of model runs also requires large amounts of computing power, and Forest is an associate of the Penn State Institute for Computational and Data Sciences.

How changes in the way the climate reacts to changes in carbon dioxide in the atmosphere is important because carbon dioxide as a heat-trapping greenhouse gas causes warming of the atmosphere and the Earth.

"Overall, we have two choices: We can adapt or start reducing emission," said Forest. "We are going to have to do better to provide long-term predictions because increased warming will raise the oceans due to melting ice. We are already seeing the results of warming in crops and health and water availability. All of these risks are already driving our decisions, our choices. We must be able to plan for the next 20 years or the next 50 years."

What Forest and his team want to do is be able to make a statement of what we can expect 50 years from now.

This type of prediction is not simple because the Earth is not warming at the same rate equally around the globe. What happens in the tropics is not what is happening at the northern latitudes.

The researchers used the Massachusetts Institute of Technology Earth System Model to test the sensitivity of probability distributions for three climate system properties, including equilibrium climate sensitivity. They included results from 25 different state of the science Earth system models, where each one is configured differently.

"Each modeling group has to determine what criteria they use to assess a model's quality, and that is often unclear," said Forest. "In one, cloud feedback might be higher, in another they might consider other components."

Not all models are run the same length of time for calibration purposes or during the set up phase. Most are tested with a 200- to 300-year interval and only a few groups ran simulations for more than 1,000. The individual model results all differ, and no single model spans the full range of internal variability.

The researchers took the estimated internal climate variability from these 25 models and compared observed climate change from the historical period against the MESM simulations. They then used results from similar, combined internal climate variability estimates in the same Earth system model.

They found that the uncertainty from individual models generally leads to a non-robust narrow estimate of climate sensitivity, while combining the uncertainty from multiple models provides wider distributions.

The researchers want to use these new results and look at the Intergovernmental Panel on Climate Change scenarios and see the full uncertainty that is embedded in those estimates of future climate.

"We would like to be able to ask what happens if we do nothing, what can we expect," said Forest. "How effective will the scenarios be to getting us to meet the 1.5 or 2 degree Celsius (2.7 or 3.6 degree Fahrenheit) targets for maximum warming?"
Also working on this research were lead author Alex G. Libardoni, recent doctoral graduate in meteorology at Penn State, now at the Cooperative institute for Research in the Atmosphere at Colorado State University; Andrei P. Sokolov, research scientist at the Massachusetts Institute of Technology Center for Global Change Science; and Erwan Monier, assistant professor of climate change impacts at the University of California, Davis.

The U.S. Department of Energy and the National Science Foundation supported this research.

Penn State

Related Climate Articles:

Climate Insights 2020: Climate opinions unchanged by pandemic, but increasingly entrenched
A new survey provides a snapshot of American opinion on climate change as the nation's public health, economy, and social identity are put to the test.
Climate action goes digital
More transparent and accessible to everyone: information and communication technologies bring opportunities for transforming traditional climate diplomacy.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
How aerosols affect our climate
Greenhouse gases may get more attention, but aerosols -- from car exhaust to volcanic eruptions -- also have a major impact on the Earth's climate.
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
How trees could save the climate
Around 0.9 billion hectares of land worldwide would be suitable for reforestation, which could ultimately capture two thirds of human-made carbon emissions.
Climate undermined by lobbying
For all the evidence that the benefits of reducing greenhouse gases outweigh the costs of regulation, disturbingly few domestic climate change policies have been enacted around the world so far.
Climate education for kids increases climate concerns for parents
A new study from North Carolina State University finds that educating children about climate change increases their parents' concerns about climate change.
Inclusion of a crop model in a climate model to promote climate modeling
A new crop-climate model provides a good tool to investigate the relationship between crop development and climate change for global change studies.
More Climate News and Climate Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.