How artificial intelligence can transform psychiatry

November 12, 2019

Thanks to advances in artificial intelligence, computers can now assist doctors in diagnosing disease and help monitor patient vital signs from hundreds of miles away.

Now, CU Boulder researchers are working to apply machine learning to psychiatry, with a speech-based mobile app that can categorize a patient's mental health status as well as or better than a human can.

"We are not in any way trying to replace clinicians," says Peter Foltz, a research professor at the Institute of Cognitive Science and co-author of a new paper in Schizophrenia Bulletin that lays out the promise and potential pitfalls of AI in psychiatry. "But we do believe we can create tools that will allow them to better monitor their patients."

Nearly one in five U.S. adults lives with a mental illness, many in remote areas where access to psychiatrists or psychologists is scarce. Others can't afford to see a clinician frequently, don't have time or can't get in to see one.

Even when a patient does make it in for an occasional visit, therapists base their diagnosis and treatment plan largely on listening to a patient talk - an age-old method that can be subjective and unreliable, notes paper co-author Brita Elvevåg, a cognitive neuroscientist at the University of Tromsø, Norway.

"Humans are not perfect. They can get distracted and sometimes miss out on subtle speech cues and warning signs," Elvevåg says. "Unfortunately, there is no objective blood test for mental health."

In pursuit of an AI version of that blood test, Elvevåg and Foltz teamed up to develop machine learning technology able to detect day-to-day changes in speech that hint at mental health decline.

For instance, sentences that don't follow a logical pattern can be a critical symptom in schizophrenia. Shifts in tone or pace can hint at mania or depression. And memory loss can be a sign of both cognitive and mental health problems.

"Language is a critical pathway to detecting patient mental states," says Foltz. "Using mobile devices and AI, we are able to track patients daily and monitor these subtle changes."

The new mobile app asks patients to answer a 5- to 10-minute series of questions by talking into their phone.

Among various other tasks, they're asked about their emotional state, asked to tell a short story, listen to a story and repeat it and given a series of touch-and-swipe motor skills tests.

In collaboration with Chelsea Chandler, a computer science graduate student at CU Boulder, and other colleagues, they developed an AI system that assesses those speech samples, compares them to previous samples by the same patient and the broader population and rates the patient's mental state.

In one recent study, the team asked human clinicians to listen to and assess speech samples of 225 participants - half with severe psychiatric issues; half healthy volunteers - in rural Louisiana and Northern Norway. They then compared those results to those of the machine learning system.

"We found that the computer's AI models can be at least as accurate as clinicians," says Foltz.

He and his colleagues envision a day when AI systems they're developing for psychiatry could be in the room with a therapist and a patient to provide additional data-driven insight, or serve as a remote-monitoring system for the severely mentally ill.

If the app detected a worrisome change, it could notify the patient's doctor to check in.

"Patients often need to be monitored with frequent clinical interviews by trained professionals to avoid costly emergency care and unfortunate events," says Foltz. " But there are simply not enough clinicians for that."

Foltz previously helped develop and commercialize an AI-based essay-grading technology which is now broadly used.

In their new paper, the researchers lay out a call to action for larger studies to prove efficacy and earn public trust before AI technology could be broadly brought into clinical practice for psychiatry.

"The mystery around AI does not nurture trustworthiness, which is critical when applying medical technology," they write. "Rather than looking for machine learning models to become the ultimate decision-maker in medicine, we should leverage the things that machines do well that are distinct from what humans do well."
-end-


University of Colorado at Boulder

Related Mental Health Articles from Brightsurf:

Mental health strained by disaster
A new study found that suicide rates increase during all types of disasters -- including severe storms, floods, hurricanes and ice storms -- with the largest overall increase occurring two years after a disaster.

The mental health impact of pandemics for front line health care staff
New research shows the impact that pandemics have on the mental health of front-line health care staff.

World Mental Health Day -- CACTUS releases report of largest researcher mental health survey
On the occasion of 'World Mental Health Day' 2020, CACTUS, a global scientific communications company, has released a global survey on mental health, wellbeing and fulfilment in academia.

Mental illness, mental health care use among police officers
A survey study of Texas police officers examines how common mental illness and mental health care use are in a large urban department.

COVID-19 outbreak and mental health
The use of online platforms to guide effective consumption of information, facilitate social support and continue mental health care delivery during the COVID-19 pandemic is discussed in this Viewpoint.

COVID-19 may have consequences for mental health
The COVID-19 pandemic appears to be adversely affecting mental health among hospitalised patients, the healthcare professionals treating them and the general population.

Mental health outcomes among health care workers during COVID-19 pandemic in Italy
Symptoms of posttraumatic stress disorder, depression, anxiety and insomnia among health care workers in Italy during the COVID-19 pandemic are reported in this observational study.

Mental ill health 'substantial health concern' among police, finds international study
Mental health issues among police officers are a 'substantial health concern,' with around 1 in 4 potentially drinking at hazardous levels and around 1 in 7 meeting the criteria for post traumatic stress disorder and depression, finds a pooled data analysis of the available international evidence, published online in Occupational & Environmental Medicine.

Examining health insurance nondiscrimination policies with mental health among gender minority individuals
A large private health insurance database was used to examine the association between between health insurance nondiscrimination policies and mental health outcomes for gender minority individuals.

Mental health care for adolescents
Researchers examined changes over time in the kinds of mental health problems for which adolescents in the United States received care and where they got that care in this survey study with findings that should be interpreted within the context of several limitations including self-reported information.

Read More: Mental Health News and Mental Health Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.