Novel deep learning method enables clinic-ready automated screening for diabetes-related eye disease

November 12, 2020

Researchers at Helmholtz Zentrum München together with LMU University Eye Hospital Munich and the Technical University of Munich (TUM) created a novel deep learning method that makes automated screenings for eye diseases such as diabetic retinopathy more efficient. Reducing the amount of expensive annotated image data that is required for the training of the algorithm, the method is attractive for clinics. In the use case of diabetic retinopathy, the researchers developed a screening algorithm that needs 75 percent less annotated data and achieves the same diagnostic performance of human experts.

In recent years, clinics have taken first steps towards artificial intelligence and deep learning to automate medical screenings. However, training a deep learning algorithm for accurate screening and diagnosis prediction requires large sets of annotated data and clinics often struggle with expensive expert labelling. Researchers were therefore looking for ways to reduce the need for costly annotated data while still maintaining the high performance of the algorithm.

Use case diabetic retinopathy

Diabetic retinopathy is a diabetes-related eye disease damaging the retina and can ultimately lead to blindness. Measuring the retinal thickness is an important procedure to diagnose the disease in risk patients. To do so, most clinics take photographs of the fundus - the surface of the back of the eye. In order to automate the screening of these images, clinics started to apply deep learning algorithms. These algorithms require large sets of fundus images with expensive annotations in order to be trained to screen correctly.

The LMU University Eye Hospital Munich owns a population-size data set containing over 120,000 unannotated fundus and co-registered OCT images. OCT (optical coherence tomography) allows for precise information about the retinal thickness but is not commonly available in every eye care center. The LMU provided their data to researchers from Helmholtz Zentrum München pioneering in the field of artificial intelligence in health.

Pre-training under "self-supervision"

"Our goal was to use this uniquely large set of fundus and OCT images to develop a method which will reduce the need of expensive annotated data for algorithm training", says Olle Holmberg, first author of the study from Helmholtz Zentrum München and TUM School of Life Sciences.

The group of researchers developed a novel method called "cross modal self-supervised retinal thickness prediction" and applied it to pre-train a deep learning algorithm with the LMU data set. In this use case, cross modal self-supervised learning allowed the algorithm to teach itself to recognize unannotated fundus images with different OCT-derived retinal thickness profiles, predicting the thickness information directly from the fundus. By accurately predicting retinal thickness, a key diagnostic feature for diabetic retinopathy, the algorithm was then able to learn how to predict screening outcomes.

High performance with a quarter of training data

This novel method shrunk the need for expensive annotated data to train the deep learning algorithm significantly. When applied in automated screenings for diabetes retinopathy, it achieved the same diagnostic performance, both, compared to previous algorithms which had required much more training data and compared to human experts.

"We reduced the need for annotated data by 75 percent", states Prof. Fabian Theis, who led the study as Director of the Institute of Computational Biology at Helmholtz Zentrum München and Scientific Director of Helmholtz AI, the artificial intelligence platform of the Helmholtz Association. "Sparse annotated data is a grand challenge in medicine. It is one of our goals to develop methods that work with less data and that can then potentially be applied in many settings. Our use case in diabetic retinopathy is ready for immediate use in clinics and is a perfect example of how AI can improve the daily business of clinics and thus everybody's health."

"Automated detection and diagnosis of sight-impairing diabetic retinopathy with widely available fundus photography is a big improvement for screenings. Patient referrals to partly overcrowded specialized eye care centers could thus be reduced as well" says Dr. med. Karsten Kortuem, LMU University Eye Hospital Munich, who was responsible for the clinical side of this study.

Moreover, an additional reduction in size, meaning number of parameters, was achieved in the algorithm itself. The novel method enables up to 200 times smaller algorithms. This could be a crucial benefit to deploying them on mobile and embedded devices which is also important in clinical settings.

Applications beyond diabetic retinopathy

Beyond diabetic retinopathy, the novel method allows for further clinical applications where much unannotated data is available but expert annotations are scarce, such as age-related macular degeneration (AMD).
-end-
Availability

The self-supervised pre-trained algorithm from this study is available on https://github.com/theislab/DeepRT.

Original publication

Holmberg et al., 2020: Self-supervised retinal thickness prediction enables deep learning from unlabeled data to boost classification of diabetic retinopathy. Nature Machine Intelligence, DOI: 10.1038/s42256-020-00247-1

Helmholtz Zentrum München

Helmholtz Zentrum München is a research center with the mission to discover personalized medical solutions for the prevention and therapy of environmentally-induced diseases and promote a healthier society in a rapidly changing world. It investigates important common diseases which develop from the interaction of lifestyle, environmental factors and personal genetic background, focusing particularly on diabetes mellitus, allergies and chronic lung diseases. Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,500 staff members. It is a member of the Helmholtz Association, the largest scientific organization in Germany with more than 40,000 employees at 19 research centers.

Helmholtz Zentrum München - German Research Center for Environmental Health

Related Algorithm Articles from Brightsurf:

CCNY & partners in quantum algorithm breakthrough
Researchers led by City College of New York physicist Pouyan Ghaemi report the development of a quantum algorithm with the potential to study a class of many-electron quantums system using quantum computers.

Machine learning algorithm could provide Soldiers feedback
A new machine learning algorithm, developed with Army funding, can isolate patterns in brain signals that relate to a specific behavior and then decode it, potentially providing Soldiers with behavioral-based feedback.

New algorithm predicts likelihood of acute kidney injury
In a recent study, a new algorithm outperformed the standard method for predicting which hospitalized patients will develop acute kidney injury.

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

QUT algorithm could quash Twitter abuse of women
Online abuse targeting women, including threats of harm or sexual violence, has proliferated across all social media platforms but QUT researchers have developed a sophisticated statistical model to identify misogynistic content and help drum it out of the Twittersphere.

New learning algorithm should significantly expand the possible applications of AI
The e-prop learning method developed at Graz University of Technology forms the basis for drastically more energy-efficient hardware implementations of Artificial Intelligence.

Algorithm predicts risk for PTSD after traumatic injury
With high precision, a new algorithm predicts which patients treated for traumatic injuries in the emergency department will later develop posttraumatic stress disorder.

New algorithm uses artificial intelligence to help manage type 1 diabetes
Researchers and physicians at Oregon Health & Science University have designed a method to help people with type 1 diabetes better manage their glucose levels.

A new algorithm predicts the difficulty in fighting fire
The tool completes previous studies with new variables and could improve the ability to respond to forest fires.

New algorithm predicts optimal materials among all possible compounds
Skoltech researchers have offered a solution to the problem of searching for materials with required properties among all possible combinations of chemical elements.

Read More: Algorithm News and Algorithm Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.