A therapeutic option for glioblastoma using pH-sensitive nanomicelles

November 12, 2020

Summary:

Using practical nano-DDS technology, a polymeric nanomicelle that effectively delivers the potent mitotic inhibitor desacetyl vinblastine hydrazide (DAVBNH) to glioblastoma (GBM) was developed. GBM, which grows rapidly under anaerobic conditions, causes acidosis due to enhanced glycolysis, and the developed nanomicelle accurately senses the pH lowering to release the contained anticancer drug. Vinca alkaloids, represented by vinblastine, are long-known anticancer agents that strongly inhibit mitosis of cells, but they are highly toxic to normal cells and poorly tolerated for treatment. This major issue was greatly improved by our nano-DDS technology. In the experiment using mice with GBM transplanted intracranial, the DAVBNH loaded nanomicelle treated group containing improved 100% survival rate by 2 times and 50% survival rate by 2.6 times in comparison with the free DAVBNH treated group. This result, published in "Biomaterials" (IF = 10.317, 2019) on October 23, suggests that it may be clinically applicable to cancers with rapid disease progression other than glioblastoma. https://doi.org/10.1016/j.biomaterials.2020.120463

Main Body:

November 12, 2020, Kawasaki in Japan: The Innovation Center of NanoMedicine (Director General: Prof. Kazunori Kataoka, Location: Kawasaki-City in Japan, Abbreviation: iCONM) announced in "Biomaterials" (Impact Factor: 10.317 in 2019) that polymeric nanomicelles that selectively releases anti-cancer drugs by utilizing the acidity in the cells of glioblastoma (GBM) has been developed focusing on the fact that the hydrogen ion concentration (pH) of GBM cells is lower than healthy tissues. GBM is a brain tumor with extremely fast disease progression and poor prognosis (5-year survival rate: 10.1%). Although some drug candidates are under clinical trials, there are currently no drug therapies that can significantly improve the overall survival. Besides, it is difficult to completely remove it by surgery keeping the brain function as much as possible while the boundary with normal tissues is unclear.

Recently, it has been noted that as a treatment method for GBM, a method using an electromagnetic pulse called Tumor Treatment Fields (TTF) improved the overall survival (10-14 months to 16-24 months). The mechanism is known to be mitotic inhibition based on the destruction of the mitotic spindle that occurs during cell division. Therefore, we focused on the vinca alkaloids represented by vinblastine, an anticancer drug, which has been used as a mitosis inhibitor for decades. This type of drug suppresses mitosis by inhibiting the polymerization of intracellular microtubules and shows strong cytotoxicity, but it also affects not only cancer cells but also normal cells, and results in various types of serious adverse events including myelosuppression. Therefore, we considered the selective delivery of vinblastine to tumor tissue using nano-DDS (drug delivery system) with polymeric micelles. In this system, the drug must be released after reaching the tumor tissue. Cancer cells are usually placed in an anaerobic environment, unable to successfully run the TCA cycle to sustain their lives, and obtain the life energy exclusively from glycolysis. This nature makes cancer tissues accumulate acidic molecules and result in acidosis. This is more pronounced in faster-growing cells and is more acidic in rapidly developing cancers such as GBM. We wanted to take advantage of this property for drug release from micelles.

Hydrazone bonding was chosen as a linker that causes acidic cleavage and prepared by selecting a block polymer with carbonyl group such as ketones or aldehydes and using desacetyl vinblastine hydrazide (DAVBNH) as a vinca alkaloid. It is known that DAVBNH is 6 times more potent than vinblastine in suppressing the growth of glioblastoma. Self-association of a PEG-PAA block copolymer with DAVBNH attached to an aliphatic ketone residue in water was able to produce nanomicelles with an average diameter of 31 nm, containing DAVBNH in its inner core. Examining the stability of these micelles in solutions at various acidities from pH 6.0 to pH 7.4, the amount of free DAVBNH was significantly different between pH 6.9 and pH 7.4. In other words, it was found that the drug can be released on the slightly acidic side by accurately capturing the subtle difference in pH. It was also found that when the ketone residue is changed to an aldehyde residue, the drug is not released until the pH drops below 5.0.

Using mice in which GL261-Luc cells, which are a type of GBM cells, were transplanted intracranially, a micelle preparation of DAVBNH or a free drug was injected through the tail vein and the antitumor effect was examined. Compared with the free drug administration group, the 100% survival rate was improved by 2 times, and the 50% survival rate was improved by 2.6 times.
-end-
Public Interest Incorporated Foundation KAWASAKI INSTITUTE OF INDUSTRIAL PROMOTION

KAWASAKI INSTITUTE OF INDUSTRIAL PROMOTION was established in 1988 funded 100% from Kawasaki City for the purpose of coping with the hollowing out of industry and changes in the demand structure. In order to realize a higher level of market development, transforming R&D type companies, training technological capabilities to support it, human resources development, understanding market needs, etc., by utilizing the functions of the Kawasaki, KAWASAKI INSTITUTE OF INDUSTRIAL PROMOTION has been contributing to revitalize the local economy by promoting exchanges of local industry information, advancing technology and corporate exchanges with establishment of a R&D institutions, developing creative human resources through workshops and promoting businesses such as expanding sales channels through exhibition business. https://www.kawasaki-net.ne.jp/

Innovation Center of NanoMedicine (iCONM)

Innovation Center of NanoMedicine (iCONM) started its operation in April 2015 as a core research center in life science field at King SkyFront on the request of Kawasaki city that KAWASAKI INSTITUTE OF INDUSTRIAL PROMOTION utilized national policies as a business operator and proposer. It is a unique research center that the world has ever seen which is designed for the purpose of promoting open innovation through industry-academia-government/medical-engineering collaboration, prepared with state-of-the-art facilities and experimental equipment, that enables comprehensive research and development from organic synthesis / microfabrication to preclinical testing. https://iconm.kawasaki-net.ne.jp/en/index.html

Center of Innovation Program (COI)

The COI program is a research and development program under the Ministry of Education, Culture, Sports, Science and Technology and the Japan Science and Technology Agency. The program employs the backcasting approach and set interdisciplinary and collaborative R&D themes that should be challenged at the present from the issues that are underlying in the future society. Eighteen centers have been established nationwide to realize radical innovation through industry-academia collaboration which cannot be accomplished by industry and academia alone.

The Kawasaki center is the only COI center managed by local governments, not universities, and the research projects carried out there are called COINS (Center of Open Innovation Network for Smart Health).

COI: https://www.jst.go.jp/tt/EN/platform/coi.html

COINS: https://coins.kawasaki-net.ne.jp/en/index.html

November 12, 2020

Inquiries

KAWASAKI INSTITUTE OF INDUSTRIAL PROMOTION
Innovation Center of NanoMedicine (iCONM)
COINS Research Promotion Office
Person in charge: Makoto Shimazaki, Koji Nagai, Mami Satake
Email: jimukyoku-coins@kawasaki-net.ne.jp

Innovation Center of NanoMedicine

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.