Illuminating tiny proteins in living cells using single-residue labeling tags

November 12, 2020

Thirty years ago, the cloning of the green fluorescent protein GFP, together with genetic engineering tools, revolutionized the field by enabling researchers to fuse a fluorescent 'beacon' to any protein of interest so that it can be directly observed in living cells using fluorescence microscopy. Today's microscopes achieve live imaging, at nanometer resolution, in multicolor, allowing researchers to resolve even the smallest subcellular structures. Fluorescent proteins however have a limitation: the size of the fluorescent tag is often equivalent to the size of a typical folded protein, thus adding a considerable molecular 'cargo' to the protein under study and potentially impacting its function. This can become a particular obstacle for the study of microproteins, a newly appreciated class of proteins that are much smaller than average.

In a study led by a postdoctoral researcher Lorenzo Lafranchi from Simon Elsässer laboratory at Karolinska Institutet SciLifeLab, a method reported, which allows fluorescent tagging of proteins with the small perturbation - a single amino acid - added genetically on either end of a (micro)protein of interest. The method is termed Single-residue Terminal Labeling, STELLA. It is based on a synthetic building block (a non-canonical "designer" amino acid, rather than one of the 21 canonical ones) that is incorporated together with a larger tag using a technique termed genetic code expansion. The tag is then swiftly removed by the cell, leaving a single terminal designer amino acid on the protein of interest. The designer amino acid introduces a chemical group into the protein that subsequently allows conjugation with a small organic fluorescent dye, lighting up the protein of interest inside of the living cell. The advantage over existing labeling techniques relying on the expansion of the genetic code, and STELLA can be used to label the termini of any proteins.

The study, published in the Journal of the American Chemical Society, demonstrates the utility of STELLA in fluorescent labeling a variety of human proteins and microproteins, localized to different subcellular compartments and organelles. Beyond cellular proteins, the team was also able to label and localize a number of elusive polypeptides produced by the SARS-CoV2 coronavirus causing Covid-19.
-end-
SciLifeLab is a joint enterprise of Swedish universities that provides frontline technologies and develop cutting-edge research programs. Situated on the expanding Stockholm biomedical campus, SciLifeLab offers the opportunity to work in an internationally competitive and synergistic environment. The Laboratory combines technical expertise with advanced knowledge of molecular biology and translational medicine.

Science For Life Laboratory

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.