Breaking it down: How cells degrade unwanted micrornas

November 12, 2020

DALLAS - Nov. 12, 2020 - UT Southwestern researchers have discovered a mechanism that cells use to degrade microRNAs (miRNAs), genetic molecules that regulate the amounts of proteins in cells.

The findings, reported online today in Science, not only shed light on the inner workings of cells but could eventually lead to new ways to fight infectious diseases, cancer, and a bevy of other health problems.

Scientists have long known that genes contain the instructions for making every protein in an organism's body. However, various processes regulate whether different proteins are produced and in what amounts. One of these mechanisms involves miRNAs, small pieces of genetic material that break down complementary pieces of messenger RNA (mRNA) in cells, preventing the mRNA sequence from being translated into proteins.

Since the discovery of miRNAs in 1993, researchers have amassed a wealth of knowledge about the hundreds of different miRNA molecules and their targets as well as mechanisms that control their production, maturation, and roles in development, physiology, and disease. However, explains Joshua Mendell, M.D., Ph.D., professor and vice chair of the department of molecular biology at UTSW, and postdoctoral fellow Jaeil Han, Ph.D., very little was known about how cells dispose of miRNAs when they're finished using them.

"As long as miRNA molecules stick around in a cell, they reduce the production of proteins from their target mRNAs," explains Mendell, a Howard Hughes Medical Institute (HHMI) investigator and member of the Harold C. Simmons Comprehensive Cancer Center. "So understanding how cells get rid of miRNAs when they are no longer needed is pivotal for fully appreciating how and when they do their jobs."

To answer this question, Mendell, Han, and their colleagues harnessed CRISPR-Cas9, a gene-editing tool that recently won the 2020 Nobel Prize in Chemistry for two scientists who developed it. By serving as "molecular scissors," Mendell says, this system can cut out individual genes, allowing researchers to explore their functions.

In a human cancer cell line known as K562, the researchers used CRISPR-Cas9 to target most of the 20,000 protein-coding genes in the human genome, looking for any that caused a normally short-lived miRNA known as miR-7 to linger in cells. Their search turned up at least 10 genes that are needed to degrade this miRNA.

The researchers learned that the proteins encoded by these genes come together in cells to form a larger assembly known as a ubiquitin ligase, which functions to tag other proteins for destruction. This particular ubiquitin ligase had never been described before, Mendell says, but like other ubiquitin ligase complexes, it appears to mark proteins destined for degradation. However, rather than tag miR-7 itself, further investigation showed that this complex instead tags a protein called Argonaute, which ferries miRNAs through cells.

Once the Argonaute protein attached to miR-7 is targeted for degradation, this miRNA is left naked in the cell - a state that triggers cells to destroy the miRNA using RNA-degrading enzymes.

The research team found that this ubiquitin ligase complex is key for degrading not only miR-7 in K562 cells, but also a variety of other miRNAs in other cell types and species. These results suggest that this mechanism for miRNA decay acts broadly to control the levels of miRNAs during animal development and across tissues. Because other studies have shown that abnormal levels of various miRNAs are associated with a variety of diseases and infections, finding ways to control miRNA degradation - either to eradicate problematic miRNAs in cells or hold on to beneficial ones - could represent a new way to treat these conditions.

"For over a decade, researchers have been searching for mechanisms through which cells degrade miRNAs," says Han. "Now that we've discovered new cellular machinery that can accomplish this, we will be able to apply this discovery to better understand how miRNAs are regulated and, we hope, eventually develop new therapies."
-end-
Other UTSW researchers who contributed to this study include Collette A. LaVigne, Benjamin T. Jones, He Zhang, and Frank Gillett.

This study was funded by grants from the National Institutes of Health (R35CA197311, P30CA142543, and P50CA196516), the Welch Foundation (I-1961-20180324), American Heart Association (19POST34380222), the Cancer Prevention and Research Institute of Texas (RP150596), and the HHMI.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty has received six Nobel Prizes, and includes 23 members of the National Academy of Sciences, 17 members of the National Academy of Medicine, and 13 Howard Hughes Medical Institute Investigators. The full-time faculty of more than 2,500 is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide care in about 80 specialties to more than 105,000 hospitalized patients, nearly 370,000 emergency room cases, and oversee approximately 3 million outpatient visits a year.

UT Southwestern Medical Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.