Micro molecules contribute mightily to heart problem

November 13, 2006

DALLAS - Nov. 13, 2006 -- Tiny bits of RNA - a chemical cousin of DNA - play a large role in causing enlargement of the heart, which is a major risk factor for heart failure and sudden death, researchers at UT Southwestern Medical Center have discovered.

Their findings, available online this week and in an upcoming issue of the Proceedings of the National Academy of Sciences, are part of a fast-growing research field revealing the wide importance of so-called micro ribonucleic acids, or miRNAs, in numerous bodily functions, including cancer, cell death and cell growth.

"They haven't been studied for very long," said Dr. Eric Olson, chairman of molecular biology and senior author of the study. "These particular micro RNAs aren't just markers of heart failure. They're actually able to cause the disease, at least in mice.

"This is the first evidence for the involvement of micro RNAs in adult heart disease," said Dr. Olson, who directs the Nancy B. and Jake L. Hamon Center for Basic Research in Cancer and the Nearburg Family Center for Basic Research in Pediatric Oncology.

Eventually, manipulating micro RNAs might be a way to treat heart disease, the researchers reported. A micro RNA can be blocked with a short complementary fragment of genetic material engineered to attach to RNA and neutralize it.

The process of identifying the damage-causing micro RNAs started with the researchers investigating whether any micro RNAs were present at abnormal levels in diseased, enlarged hearts of mice. Sixteen of the 28 such micro RNAs identified were focused on because they were similar to those found in humans and rats. The researchers found that some of the same micro RNAs are present at abnormal concentrations in diseased human hearts, suggesting that these micro RNAs also play a role in human heart disease.

Dr. Olson's team eventually zeroed in on one micro RNA, called miR-195, which had both visible and functional effects on the heart. These effects were established by creating genetically modified mice that had higher-than-normal amounts of miR-195. Those mice had misshapen hearts and decreased pumping power.

In addition, adding miR-195 to heart cells cultured in dishes made the cells larger and more disorganized.

Because some of the micro RNAs studied are known to be involved in other cell processes, the researchers speculate that these particular RNAs play a role in cell division or growth of heart muscle cells. Further research is needed to determine the mechanism by which miR-195 causes the heart to enlarge, Dr. Olson said.
-end-
Other UT Southwestern researchers involved in the study were Dr. Eva van Rooij, postdoctoral researcher in molecular biology and the study's lead author; Lillian Sutherland, research scientist in molecular biology; Dr. Ning Liu, postdoctoral researcher in molecular biology; graduate student research assistant Andrew Williams; research technician John McAnally; Dr. Robert Gerard, associate professor of internal medicine and molecular biology; and Dr. James Richardson, professor of pathology and molecular biology.

The work was supported by the National Institutes of Health, the Donald W. Reynolds Cardiovascular Clinical Research Center at UT Southwestern and the Welch Foundation.

About UT Southwestern Medical Center

UT Southwestern Medical Center, one of the premier medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. Its more than 1,400 full-time faculty members - including four active Nobel Prize winners, more than any other medical school in the world - are responsible for groundbreaking medical advances and are committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in 40 specialties to nearly 89,000 hospitalized patients and oversee 2.1 million outpatient visits a year.

This news release is available on our World Wide Web home page at

http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail,

subscribe at www.utsouthwestern.edu/receivenews

Dr. Eric Olson - http://www.utsouthwestern.edu/findfac/professional/0,2356,15426,00.html

UT Southwestern Medical Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.