Abnormal glutamine repeats interfere with key transcription factor, leading to neurodegeneration

November 13, 2007

Although repeating sequences of three nucleotides encoding some of the bodies' 20 amino acids are a normal part of protein composition, abnormal expansion of trinucleotide repeats is the known cause of multiple inherited neurodegenerative disorders, including Huntington disease.

Scientists at Emory University School of Medicine, in research with mice, now have discovered more specific information about how this inherited expansion of a normal repeated DNA sequence alters gene expression. The research is reported online in the journal Nature Neuroscience.

The inherited diseases caused by an abnormal number of glutamine repeats (generally, more than 37) are known as polyglutamine, or PolyQ diseases. The diseases lead to a progressive degeneration of nerve cells usually affecting people later in life. Although these diseases share the same abnormal expansion of the repeated glutamine sequence and some symptoms, the repeats for the different PolyQ diseases occur in genes on different chromosomes.

The scientists found that abnormal glutamine repeats interfere with the function of an essential transcription factor called TBP (TATA-box binding protein). In turn, the expanded polyQ sequence alters the interaction of TBP with other transcription factors, leading to neurodegeneration. Transcription is the process by which the genetic code in the DNA sequence is first transcribed into RNA. The RNA is subsequently translated into a protein.

"Our study has a broad impact for understanding transcriptional regulation of gene expression as well as the pathogenesis of neurodegeneration caused by expanded polyglutamine proteins," says Xiao-Jiang Li, MD, PhD, Distinguished Professor of Human Genetics in Emory University School of Medicine and the paper's senior author.
-end-
Lead author was Meyer J. Friedman, a graduate student in Emory's Department of Human Genetics. Other Emory authors were Anjali G. Shah, Zhi-Hiu Fang, Elizabeth G. Ward, Stephen T. Warren and Shihua Li.The research was funded by the National Institutes of Health.

Emory Health Sciences

Related Amino Acids Articles from Brightsurf:

Igniting the synthetic transport of amino acids in living cells
Researchers from ICIQ's Ballester group and IRBBarcelona's Palacín group have published a paper in Chem showing how a synthetic carrier calix[4]pyrrole cavitand can transport amino acids across liposome and cell membranes bringing future therapies a step closer.

Microwaves are useful to combine amino acids with hetero-steroids
Aza-steroids are important class of compounds because of their numerous biological activities.

New study finds two amino acids are the Marie Kondo of molecular liquid phase separation
a team of biologists at the Advanced Science Research Center at The Graduate Center, CUNY (CUNY ASRC) have identified unique roles for the amino acids arginine and lysine in contributing to molecule liquid phase properties and their regulation.

Prediction of protein disorder from amino acid sequence
Structural disorder is vital for proteins' function in diverse biological processes.

A natural amino acid could be a novel treatment for polyglutamine diseases
Researchers from Osaka University, National Center of Neurology and Psychiatry, and Niigata University identified the amino acid arginine as a potential disease-modifying drug for polyglutamine diseases, including familial spinocerebellar ataxia and Huntington disease.

Alzheimer's: Can an amino acid help to restore memories?
Scientists at the Laboratoire des Maladies Neurodégénératives (CNRS/CEA/Université Paris-Saclay) and the Neurocentre Magendie (INSERM/Université de Bordeaux) have just shown that a metabolic pathway plays a determining role in Alzheimer's disease's memory problems.

New study indicates amino acid may be useful in treating ALS
A naturally occurring amino acid is gaining attention as a possible treatment for ALS following a new study published in the Journal of Neuropathology & Experimental Neurology.

Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.

To make amino acids, just add electricity
By finding the right combination of abundantly available starting materials and catalyst, Kyushu University researchers were able to synthesize amino acids with high efficiency through a reaction driven by electricity.

Nanopores can identify the amino acids in proteins, the first step to sequencing
While DNA sequencing is a useful tool for determining what's going on in a cell or a person's body, it only tells part of the story.

Read More: Amino Acids News and Amino Acids Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.