Small, beautiful and additive-free

November 13, 2009

The National Research Council Canada (NRC) recently helped Olympus, a world leader in advanced optical microscopy and medical imaging, to design and commercialize a CARS (Coherent Anti-stokes Raman Scattering) microscope. A new CARS user facility will open its doors to Canadian researchers and the medical community in Ottawa on November 17, 2009.

The new Olympus microscope is based on a femtosecond non-linear optical process called CARS, which stands for Coherent Anti-Stokes Raman Scattering. CARS is a molecule-specific imaging method that permits researchers to see particular chemicals and structures inside living cells, without adding any dyes or stains: CARS is additive-free! While CARS itself is not new, the NRC team developed a simple, robust yet high performance approach that permitted rapid commercialization. CARS microscopy will now be available to biological and medical researchers in a cost-effective system. New opportunities will abound.

Cells are very small and optical microscopes are required to see them. Unfortunately, the internal components of cells do not come colour-coded for our convenience. To deal with this, scientists have developed, over many decades, various dyes and stains to colour the internal bits of cells so that they could be discerned in an optical microscope. However, if one wants to study processes in live cells busily going about their business, there is a problem. Cellular processes and biochemistry are exceedingly complex and no one knows for sure if these added dyes or stains alter any of these biochemical processes. The best, of course, would be to observe live cells without adding anything at all. Enter CARS microscopy.

CARS is based upon the internal vibrations of molecules. Different molecules have different structures. Due to this, the internal vibrations of these molecules will also be different. CARS recognizes molecules by their "vibrational fingerprint". It is this unique characteristic that allows CARS microscopy to image components inside of cells without adding any dyes or stains.

Compared to Raman microscopy, a well established imaging method that also uses "vibrational fingerprints", CARS is a game changer. For example, a Raman microscopy image that might take 12 hours to scan can now be recorded using CARS microscopy in ½ a second. This allows for real-time movies to be made of live cells and biological tissues.
-end-
Visit: www.carslab.ca for more information on the event. Registration is free at http://www.olympuscanada.ca/seg_section/rsvp.asp?id=144

National Research Council of Canada

Related Medical Imaging Articles from Brightsurf:

Improved medical imaging improves cancer staging
Prof. TIAN Chao's group improved the imaging quality and 3D construction of the photoacoustic imaging, and applied them to in vivo sentinel lymph node imaging.

AI techniques in medical imaging may lead to incorrect diagnoses
Machine learning and AI are highly unstable in medical image reconstruction, and may lead to false positives and false negatives, a new study suggests.

Tiny devices promise new horizon for security screening and medical imaging
Miniature devices that could be developed into safe, high-resolution imaging technology, with uses such as helping doctors identify potentially deadly cancers and treat them early, have been created in research involving the University of Strathclyde.

Advanced medical imaging combined with genomic analysis could help treat cancer patients
Melding the genetic and cellular analysis of tumors with how they appear in medical images could give physicians new insights into how to best treat patients, especially those with brain cancer, according to a new study led by TGen.

Low doses of radiation used in medical imaging lead to mutations in cell cultures
Common medical imaging procedures use low doses of radiation that are believed to be safe.

Use of medical imaging
This observational study looked at patterns of use for computed tomography (CT), magnetic resonance imaging (MRI), ultrasound and nuclear medicine imaging in the United States and in Ontario, Canada, from 2000 to 2016.

Medical imaging rates continue to rise despite push to reduce their use
The rates of use of CT, MRI and other scans have continued to increase in both the US and Ontario, Canada, according to a new study of more than 135 million imaging exams conducted by researchers at UC Davis, UC San Francisco and Kaiser Permanente.

Two-in-one contrast agent for medical imaging
Magnetic resonance imaging (MRI) visualizes internal body structures, often with the help of contrast agents to enhance sensitivity.

Medical imaging rates during pregnancy
Researchers looked at rates of medical imaging (CT, MRI, conventional x-rays, angiography, fluoroscopy and nuclear medicine) during pregnancy in this observational study that included nearly 3.5 million pregnant women in the United States and Canada from 1996 to 2016.

Scientists discover new method for developing tracers used for medical imaging
University of North Carolina researchers discovered a method for creating radioactive tracers to better track pharmaceuticals in the body as well as image diseases, such as cancer, and other medical conditions.

Read More: Medical Imaging News and Medical Imaging Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.