G proteins regulate remodelling of blood vessels

November 13, 2012

Blood vessels are extremely dynamic: depending on the external conditions, they can adapt their permeability for nutrients, their contractility, and even their shape. Unlike cardiac muscle cells, for example, the smooth muscle cells in blood vessels demonstrate a high degree of plasticity, so they can specialise or multiply as required, even repairing damage to the vessel wall. This vascular remodelling is evidently precisely regulated. Disruptions are extremely significant in conditions such as atherosclerosis or high blood pressure. At the Max Planck Institute for Heart and Lung Research in Bad Nauheim, scientists conducting research on genetically modified mice have discovered how external signals regulate vascular remodelling at cell level. This has created an entirely new understanding of regulation, which could pave the way for new approaches in the prevention and treatment of atherosclerosis and other vascular diseases.

The walls of blood vessels consist of smooth muscle cells, elastic fibres, and endothelial cells, which line the interior surface of the vessel. The vessels change their permeability and contractility as required. If a blood vessel is damaged, existing smooth muscle cells can give rise to new specialised muscle cells to repair it. However, in the case of a vascular problem, this necessary and useful cell plasticity can have negative consequences. For example, if a coronary blood vessel is opened up with dilatation and stents via a catheter, muscle cell growth may cause it to narrow once again. In the common condition atherosclerosis or vascular calcification, too, remodelling processes lead to formation of the dreaded plaque. All these processes are regulated by hormones or neurotransmitters, some of which are released by cells and nerves in the vessel wall. Most of these vasoactive messengers work by binding to receptors, which in turn, once activated, bind to what are known as G proteins. These are situated on the inside of the cell membrane and relay the signal from there into the cell interior.

"There are two different families of G proteins which play a crucial role in vascular remodelling. They are called Gq/G11 and G12/G13 after their protein components," explains Max Planck scientist Stefan Offermanns, who has been researching these proteins and their molecular signalling pathways for several years now. In the latest study on genetically modified mice, the team was able to demonstrate for the first time how, in a living animal, these two signalling pathways are regulated by messengers. "Contrary to expectations, the two G protein-mediated signalling pathways antagonistically regulate the plasticity of smooth muscle cells," says Offermanns, summarising the findings. This is surprising in that these signalling pathways act together in other contexts: stimuli that promote vessel contraction and thus increase blood pressure activate both signalling pathways in parallel.

In order to investigate the signalling pathways and their regulation, Till Althoff, who headed the study, examined mice whose genes for the various G proteins he had specifically deactivated. Thus the researcher was able to show, for example, that in a mouse suffering from atherosclerosis and missing G12/G13 in the smooth muscle cells, these cells begin to grow excessively - the result was a considerably thickened vessel wall. By contrast, animals lacking a Gq/G11 protein were protected against this thickening of the cell wall.

"We see here clearly that in vascular remodelling the two signalling pathways work as antagonists," Offermanns explains. Which is only sensible, as it is the only way a system can balance cell growth and regression. In further tests, the scientists also demonstrated the steps required for the two pathways to achieve their objective and stimulate the genes in the cell interior responsible for generating specialised cells or for cell growth.

"Our results really do reveal a completely new picture of the regulation of vascular remodelling, also in pathological processes," says Offermanns. The researchers are therefore hopeful that new pharmacological approaches can be developed. Offermanns can well imagine, for example, that drugs could be used to modulate plasticity in cases of vascular diseases like atherosclerosis or after cardiological interventions. Now that the target structures in both signalling pathways have been identified, new possibilities are opening up. For instance, the pathway that promotes growth could be blocked and the stabilising pathway activated in order to slow down the remodelling process. "In animal models we are already investigating new therapeutic approaches to preventing atherosclerosis and suppressing cell growth in damaged vessels," reports Offermanns.
-end-
Original publication:

Till F. Althoff, Julián Albarrán Juárez, Kerstin Troidl, Cong Tang, Shengpeng Wang, Angela Wirth, Mikito Takefuji, Nina Wettschureck, Stefan Offermanns Procontractile G protein-mediated signalling pathways antagonistically regulate smooth muscle differentiation in vascular remodelling. J. Exp. Med. 2012, published online 5 November 2012 DOI: 10.1084/jem.20120350

Max-Planck-Gesellschaft

Related Atherosclerosis Articles from Brightsurf:

How hormone therapy slows progression of atherosclerosis
As one of the most common treatments for effectively managing menopause symptoms, hormone therapy (HT) is also known to provide multiple health benefits, including slowing the progression of atherosclerosis.

T cells can shift from helping to harming in atherosclerosis
At La Jolla Institute for Immunology (LJI) researchers are dedicated to finding a way to stop plaques from forming in the first place.

New nanoparticle drug combination for atherosclerosis
Physicochemical cargo-switching nanoparticles (CSNP) designed by KAIST can help significantly reduce cholesterol and macrophage foam cells in arteries, which are the two main triggers for atherosclerotic plaque and inflammation.

Atherosclerosis -- How a microRNA protects vascular integrity
Ludwig-Maximilian-Universitaet (LMU) in Munich researchers have discovered a hitherto unknown molecular function of a specific microRNA that preserves integrity of the endothelium and reduces the risk of atherosclerosis.

Atherosclerosis progresses rapidly in healthy people from the age of 40
A CNIC study published in JACC demonstrates that atheroma plaques extend rapidly in the arteries of asymptomatic individuals aged between 40 and 50 years participating in the PESA-CNIC-Santander study.

Scaling up a nanoimmunotherapy for atherosclerosis through preclinical testing
By integrating translational imaging techniques with improvements to production methods, Tina Binderup and colleagues have scaled up a promising nanoimmunotherapy for atherosclerosis in mice, rabbits and pigs -- surmounting a major obstacle in nanomedicine.

Bladder drug linked to atherosclerosis in mice
A drug used in the treatment of overactive bladder can accelerate atheroclerosis in mice, researchers at Karolinska Institutet in Sweden report in a study published in the Proceedings of the National Academy of Sciences (PNAS).

A new therapeutic target for blocking early atherosclerosis in progeria
Researchers at the Centro Nacional de Investigaciones Cardiovasculares and the Universidad de Oviedo have discovered a new molecular mechanism involved in the premature development of atherosclerosis in mice with Hutchinson-Gilford progeria syndrome.

Protective mechanism against atherosclerosis discovered
Immune cells promoting inflammation play a crucial role in the development of atherosclerosis.

Atherosclerosis: Stopped on time
For the first time, LMU researchers are pointing out the influence of the internal clock on atherosclerosis.

Read More: Atherosclerosis News and Atherosclerosis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.