Human eye gives researchers visionary design for new, more natural lens technology

November 13, 2012

WASHINGTON, Nov. 13--Drawing heavily upon nature for inspiration, a team of researchers has created a new artificial lens that is nearly identical to the natural lens of the human eye. This innovative lens, which is made up of thousands of nanoscale polymer layers, may one day provide a more natural performance in implantable lenses to replace damaged or diseased human eye lenses, as well as consumer vision products; it also may lead to superior ground and aerial surveillance technology.

This work, which the Case Western Reserve University, Rose-Hulman Institute of Technology, U.S. Naval Research Laboratory, and PolymerPlus team describes in the Optical Society's (OSA) open-access journal Optics Express, also provides a new material approach for fabricating synthetic polymer lenses.

The fundamental technology behind this new lens is called "GRIN" or gradient refractive index optics. In GRIN, light gets bent, or refracted, by varying degrees as it passes through a lens or other transparent material. This is in contrast to traditional lenses, like those found in optical telescopes and microscopes, which use their surface shape or single index of refraction to bend light one way or another.

"The human eye is a GRIN lens," said Michael Ponting, polymer scientist and president of PolymerPlus, an Ohio-based Case Western Reserve spinoff launched in 2010. "As light passes from the front of the human eye lens to the back, light rays are refracted by varying degrees. It's a very efficient means of controlling the pathway of light without relying on complicated optics, and one that we attempted to mimic."

The first steps along this line were taken by other researchers[1, 2] and resulted in a lens design for an aging human eye, but the technology did not exist to replicate the gradual evolution of refraction.

The research team's new approach was to follow nature's example and build a lens by stacking thousands and thousands of nanoscale layers, each with slightly different optical properties, to produce a lens that gradually varies its refractive index, which adjusts the refractive properties of the polymer.

"Applying naturally occurring material architectures, similar to those found in the layers of butterfly wing scales, human tendons, and even in the human eye, to multilayered plastic systems has enabled discoveries and products with enhanced mechanical strength, novel reflective properties, and optics with enhanced power," explains Ponting.

To make the layers for the lens, the team used a multilayer-film coextrusion technique (a common method used to produce multilayer structures). This fabrication technique allows each layer to have a unique refractive index that can then be laminated and shaped into GRIN optics.

It also provides the freedom to stack any combination of the unique refractive index nanolayered films. This is extremely significant and enabled the fabrication of GRIN optics previously unattainable through other fabrication techniques.

GRIN optics may find use in miniaturized medical imaging devices or implantable lenses. "A copy of the human eye lens is a first step toward demonstrating the capabilities, eventual biocompatible and possibly deformable material systems necessary to improve the current technology used in optical implants," Ponting says.

Current generation intraocular replacement lenses, like those used to treat cataracts, use their shape to focus light to a precise prescription, much like contacts or eye glasses. Unfortunately, intraocular lenses never achieve the same performance of natural lenses because they lack the ability to incrementally change the refraction of light. This single-refraction replacement lens can create aberrations and other unwanted optical effects.

And the added power of GRIN also enables optical systems with fewer components, which is important for consumer vision products and ground- and aerial-based military surveillance products.

This technology has already moved from the research labs of Case Western Reserve to PolymerPlus for commercialization. "Prototype and small batch fabrication facilities exist and we're working toward selecting early adoption applications for nanolayered GRIN technology in commercial devices," notes Ponting.
-end-
Paper: "A Bio-Inspired Polymeric Gradient Refractive Index Human Eye Lens," Optics Express, Vol. 20, Issue 24, pp. 26746-26754 (2012) (http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-15-11540)

EDITOR'S NOTE: Images of the GRIN lens are available to members of the media upon request. Contact Angela Stark, astark@osa.org.

About Optics Express

Optics Express reports on new developments in all fields of optical science and technology every two weeks. The journal provides rapid publication of original, peer-reviewed papers. It is published by the Optical Society and edited by C. Martijn de Sterke of the University of Sydney. Optics Express is an open-access journal and is available at no cost to readers online at http://www.OpticsInfoBase.org/OE.

About OSA

Uniting more than 180,000 professionals from 175 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit www.osa.org.

References:

1. J. A. Díaz, C. Pizarro, and J. Arasa, "Single dispersive gradient-index profile for the aging human eye lens," J. Opt. Soc. Am. A 25, 250-261 (2008).

2. C.E. Campbell, "Nested shell optical model of the lens of the human eye," J. Opt. Soc. Am. A 27, 2432-2441 (2010).

The Optical Society

Related Polymer Articles from Brightsurf:

Impurities enhance polymer LED efficiencies
New research published in EPJ B reveals that the higher-than-expected efficiency of PLEDs can be reached through interactions between triplet excitons, and impurities embedded in their polymer layers.

Safety of bioabsorbable polymer against durable polymer DES in high-risk PCI patients
A novel study sought to reveal whether drug-eluting stents (DES) coated with bioabsorbable polymer (BP) presented a safety advantage without compromising efficacy compared to durable polymer (DP) formulations.

Polymer membranes could benefit from taking a dip
A new technique developed by a team including researchers from the US Department of Energy (DOE)'s Argonne National Laboratory makes atomic layer deposition possible on nearly any membrane.

New polymer material may help batteries become self-healing, recyclable
Lithium-ion batteries are notorious for developing internal electrical shorts that can ignite a battery's liquid electrolytes, leading to explosions and fires.

Researchers add order to polymer gels
Gel-like materials have a wide range of applications, especially in chemistry and medicine.

Bundlemers (new polymer units) could transform industries
From tires to clothes to shampoo, many ubiquitous products are made with polymers, large chain-like molecules made of smaller sub-units, called monomers, bonded together.

New synthetic polymer degradable under very mild acidic conditions
A new type of degradable synthetic polymer was prepared by Rh-catalyzed three-component polymerization of a bis(diazocarbonyl) compound, bis(1,3-diketone), and tetrahydrofuran.

New polymer tackles PFAS pollution
toxic polyfluorinated alkyl substances (PFAS) pollution -- commonly used in non-stick and protective coatings, lubricants and aviation fire-fighting foams -- can now be removed from the environment thanks to a new low-cost, safe and environmentally friendly polymer.

New polymer films conduct heat instead of trapping it
MIT engineers have flipped the picture of the standard polymer insulator, by fabricating thin polymer films that conduct heat -- an ability normally associated with metals.

Polymer reversibly glows white when stretched
Polymers that change their appearance in response to mechanical forces can warn of damage developing in a material before the stress causes structural failure.

Read More: Polymer News and Polymer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.