Teenagers' brains affected by preterm birth

November 13, 2012

New research at the University of Adelaide has demonstrated that teenagers born prematurely may suffer brain development problems that directly affect their memory and learning abilities.

The research, conducted by Dr Julia Pitcher and Dr Michael Ridding from the University of Adelaide's Robinson Institute, shows reduced 'plasticity' in the brains of teenagers who were born preterm (at or before 37 weeks gestation).

The results of the research are published today in the Journal of Neuroscience.

"Plasticity in the brain is vital for learning and memory throughout life," Dr Pitcher says. "It enables the brain to reorganize itself, responding to changes in environment, behavior and stimuli by modifying the number and strength of connections between neurons and different brain areas. Plasticity is also important for recovery from brain damage.

"We know from past research that preterm-born children often experience motor, cognitive and learning difficulties. The growth of the brain is rapid between 20 and 37 weeks gestation, and being born even mildly preterm appears to subtly but significantly alter brain microstructure, neural connectivity and neurochemistry.

"However, the mechanisms that link this altered brain physiology with behavioral outcomes - such as memory and learning problems - have remained unknown," Dr Pitcher says.

The researchers compared preterm adolescents with those born at term, and also with term-born adults. They used a non-invasive magnetic brain stimulation technique, inducing responses from the brain to obtain a measure of its plasticity. Levels of cortisol, normally produced in response to stress, were also measured to better understand the chemical and hormonal differences between the groups.

"Teenagers born preterm clearly showed reduced neuroplasticity in response to brain stimulation," Dr Pitcher says. "Surprisingly, even very modest preterm birth was associated with a reduced brain response. On the other hand, term-born teenagers were highly 'plastic' compared with adults and the preterm teens.

"Preterm teens also had low levels of cortisol in their saliva, which was highly predictive of this reduced brain responsiveness. People often associate increased cortisol with stress, but cortisol fluctuates up and down normally over each 24-hour period and this plays a critical role in learning, the consolidation of new knowledge into memory and the later retrieval of those memories. This might be important for the development of a possible therapy to overcome the neuroplasticity problem," she says.
-end-
The publication of these research results coincides with the Robinson Institute's Great Expectations for Life campaign, an awareness and fundraising campaign to support research into preterm birth. For more information visit the website: www.greatexpectationsforlife.org

Saturday 17 November is World Prematurity Day.


Media contact:Dr Julia Pitcher
M.S. McLeod Research Fellow
Robinson Institute
The University of Adelaide
Phone: +61 8 8313 1301
julia.pitcher@adelaide.edu.au

University of Adelaide

Related Stress Articles from Brightsurf:

Stress-free gel
Researchers at The University of Tokyo studied a new mechanism of gelation using colloidal particles.

Early life stress is associated with youth-onset depression for some types of stress but not others
Examining the association between eight different types of early life stress (ELS) and youth-onset depression, a study in JAACAP, published by Elsevier, reports that individuals exposed to ELS were more likely to develop a major depressive disorder (MDD) in childhood or adolescence than individuals who had not been exposed to ELS.

Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.

How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS

How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.

Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.

Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.

Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.

Read More: Stress News and Stress Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.