Mystery explained: How a common chemo drug thwarts graft rejection in bone marrow transplants

November 13, 2013

Results of a Johns Hopkins study may explain why a chemotherapy drug called cyclophosphamide prevents graft-versus-host (GVHD) disease in people who receive bone marrow transplants. The experiments point to an immune system cell that evades the toxic effects of cyclophosphamide and protects patients from a lethal form of GVHD.

The findings, published online Nov. 13 in Science Translational Medicine, could pave the way for improvements in preventing GVHD and rejection of transplanted bone marrow and new therapies to prevent or treat a relapse of the underlying cancer after a transplant.

"Finding the optimal conditions to avoid interfering with immune cells working to eradicate cancer while preventing graft rejection and GVHD is the holy grail of bone marrow transplant," says Leo Luznik, M.D., associate professor of oncology at the Johns Hopkins Kimmel Cancer Center. "We've known for some time that giving cyclophosphamide after a transplant helps prevent GVHD, and our study provides an important piece of the puzzle for why it works."

GVHD occurs when newly transplanted immune cells from a donor's bone marrow attack the patient's body. Commonly used immunosuppressant drugs prevent rapid-onset, acute GVHD but not persistent, long-lasting, chronic GVHD, which may cause severe disability and death.

In the early 2000s, Johns Hopkins scientists Leo Luznik and Ephraim Fuchs found that giving patients high doses of cyclophosphamide - a drug derived from nitrogen mustard and used to treat blood cancers - three days after bone marrow transplant successfully thwarts acute and chronic GVHD. Johns Hopkins physicians also found that post-transplant cyclophosphamide enabled safe administration of new, half-matched bone marrow transplants in addition to traditional, fully matched ones. Medical centers around the world now use the Johns Hopkins protocol of post-transplant cyclophosphamide, and Luznik says the inexpensive drug is becoming increasingly mainstream in bone marrow transplant regimens.

Some of the first clues to how cyclophosphamide works were also discovered in the 1980s by Johns Hopkins scientists. They found that cyclophosphamide kills all of the donor's transplanted bone marrow cells except for stem cells containing high levels of an enzyme called aldehyde dehydrogenase (ALDH). The ALDH-laden stem cells evade the toxic effects of cyclophosphamide and rebuild the patient's immune system. Richard Jones, M.D., professor and director of the Bone Marrow Transplant Program at Johns Hopkins, developed a now commonly used assay to study ALDH levels in individual cells.

Yet, scientists lacked an explanation for why post-transplant cyclophosphamide effectively curtailed acute and chronic GVHD.

Luznik and his team inventoried types of immune cells present in the blood of bone marrow transplant patients treated with post-transplant cyclophosphamide. The scientists zeroed in on a type of immune cell called regulatory T-cells, which were known to suppress autoimmune responses. They found high levels of the regulatory T-cells in patients treated with post-transplant cyclophosphamide, and lab-cultured cells survived cyclophosphamide treatment.

Using polymerase chain reaction methods that amplify DNA and Jones' assay that detects by-products of ALDH, the Johns Hopkins team found that regulatory T-cells express high levels of ALDH.

"These regulatory T-cells are resistant to post-transplant cyclophosphamide and likely subdue the autoimmune-like response of the donor's bone marrow, preventing GVHD," says Christopher Kanakry, M.D., first author of the study and clinical fellow at the Johns Hopkins Kimmel Cancer Center. Patients receiving standard immunosuppressive drugs after transplant, as opposed to high-dose cyclophosphamide, have slower recovery of regulatory T-cells in their blood, adds Kanakry.

The scientists also showed, in lab-cultured human cells, that an ALDH-blocking drug strips regulatory T-cells of their ability to grow and protect themselves from cyclophosphamide.

Luznik says his team is continuing to study methods to improve post-transplant cyclophosphamide, and it may be possible to use these findings to add other relapse-fighting therapies early after transplant. "Our findings may also lead to even wider acceptance of post-transplant cyclophosphamide," he said.

Funding for the study was provided by the National Institutes of Health, National Cancer Institute and National Heart, Lung, and Blood Institute (HL110907, CA122779, CA15396, UL1-RRO25005, and HL007525), the Conquer Cancer Foundation of the American Society of Clinical Oncology and Otsuka Pharmaceutical.

The assay (Aldefluor) used in this research was developed and patented by Richard Jones. Under a licensing agreement between Aldagen and the Johns Hopkins University, Jones is entitled to a share of royalties received by the University. The terms of this arrangement are managed by Johns Hopkins University in accordance with its conflict-of-interest policies.
In addition to Luznik, Kanakry and Jones, scientists contributing to the research include Sudipto Ganguly, Marianna Zahurak, Javier Bolaños-Meade, Christopher Thoburn, Brandy Perkins, Ephraim Fuchs and Allan Hess.

On the Web:

Johns Hopkins Medicine (JHM), headquartered in Baltimore, Maryland, is a $6.7 billion integrated global health enterprise and one of the leading health care systems in the United States. JHM unites physicians and scientists of the Johns Hopkins University School of Medicine with the organizations, health professionals and facilities of The Johns Hopkins Hospital and Health System. JHM's vision, "Together, we will deliver the promise of medicine," is supported by its mission to improve the health of the community and the world by setting the standard of excellence in medical education, research and clinical care. Diverse and inclusive, JHM educates medical students, scientists, health care professionals and the public; conducts biomedical research; and provides patient-centered medicine to prevent, diagnose and treat human illness. JHM operates six academic and community hospitals, four suburban health care and surgery centers, and more than 30 primary health care outpatient sites. The Johns Hopkins Hospital, opened in 1889, was ranked number one in the nation for 21 years in a row by U.S. News & World Report. Media Contacts:

Vanessa Wasta, 410-614-2916

Amy Mone, 410-614-2915

Johns Hopkins Medicine

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to