Northeastern researchers have discovered a new treatment to cure MRSA infection

November 13, 2013

Recent work from University Distinguished Professor of Biology Kim Lewis promises to overcome one of the leading public health threats of our time. In a groundbreaking study published Wednesday in the journal Nature, Lewis' team presents a novel approach to treat and eliminate methicillin resistant staphylococcus aureus, or MRSA, a potent bacterium whose resistance to antibiotics has kept it one step ahead of researchers. That is, until now.

The so-called "superbug" infects 1 million Americans each year. A major problem with MRSA is the development of deep-seated chronic infections such as osteomyelitis (bone infection), endocarditis (heart infection), or infections of implanted medical devices. Once established, these infections are often incurable, even when appropriate antibiotics are used.

Bacteria such as MRSA have evolved to actively resist certain antibiotics, a fact that has generated significant interest among the scientific and medical communities. But Lewis, Director of Northeastern's Antimicrobial Discovery Center, suspected that a different adaptive function of bacteria might be the true culprit in making these infections so devastating.

The new work represents the culmination of more than a decade of research on a specialized class of cells produced by all pathogens called persisters. According to Lewis, these cells evolved to survive. "Survival is their only function," he said. "They don't do anything else."

Lewis and his research team posited that if they could kill these expert survivors, perhaps they could cure chronic infections--even those resistant to multiple antibiotics such as MRSA. Furthermore, said Brian Conlon, a postdoctoral researcher in Lewis' lab and first author on the paper, "if you can eradicate the persisters, there's less of a chance that resistance will develop at all."

Lewis, who was elected to the American Academy of Microbiology in 2011 for his scholarship in the field, has found that persisters achieve their singular goal by entering a dormant state that makes them impervious to traditional antibiotics. Since these drugs work by targeting active cellular functions, they are useless against dormant persisters, which aren't active at all. For this reason, persisters are critical to the success of chronic infections and biofilms, because as soon as a treatment runs its course, their reawakening allows for the infection to establish itself anew.

In the recent study, which also includes contributions from assistant professor Steve Leonard of the Department of Pharmacy Practice, Lewis' team found that a drug called ADEP effectively wakes up the dormant cells and then initiates a self-destruct mechanism. The approach completely eradicated MRSA cells in a variety of laboratory experiments and, importantly, in a mouse model of chronic MRSA infection.

Coupling ADEP with a traditional antibiotic, Conlon noted, allowed the team to completely destroy the bacterial population without leaving any survivors.

As with all other antibiotics, actively growing bacterial cells will likely develop resistance to ADEP. However, Lewis said, "cells that develop ADEP resistance become rather wimpy." That is, other traditional drugs such as rifampicin or linezolid work well against ADEP-resistant cells, providing a unique cocktail that not only kills persisters but also eliminates ADEP-resistant mutant bacteria.

Dr. Richard Novick of New York University's Langone Medical Center and a leader in the field said the research is a "brilliant outgrowth of Kim Lewis' pioneering work on bacterial persisters and represents a highly creative initiative in this era of diminishing antibiotic utility."

While ADEP targets MRSA, Lewis' team believes similar compounds will be useful for treating other infections as well as any other disease model that can only be overcome by eliminating a population of rogue cells, including cancerous tumors. They are pursuing several already.
-end-


Northeastern University

Related Antibiotics Articles from Brightsurf:

Insights in the search for new antibiotics
A collaborative research team from the University of Oklahoma, the Memorial Sloan Kettering Cancer Center and Merck & Co. published an opinion article in the journal, Nature Chemical Biology, that addresses the gap in the discovery of new antibiotics.

New tricks for old antibiotics
The study published in the journal Immunity reveals that tetracyclines (broad spectre antibiotics), by partially inhibiting cell mitochondria activity, induce a compensatory response on the organism that decreases tissue damage caused during infection.

Benefits, risks seen with antibiotics-first for appendicitis
Antibiotics are a good choice for some patients with appendicitis but not all, according to study results published today in the New England Journal of Medicine.

How antibiotics interact
Understanding bottleneck effects in the translation of bacterial proteins can lead to a more effective combination of antibiotics / study in 'Nature Communications'

Are antivitamins the new antibiotics?
Antibiotics are among the most important discoveries of modern medicine and have saved millions of lives since the discovery of penicillin almost 100 years ago.

Hygiene reduces the need for antibiotics by up to 30%
A new paper published in the American Journal of Infection Control (AJIC), finds improved everyday hygiene practices, such as hand-washing, reduces the risk of common infections by up to 50%, reducing the need for antibiotics, by up to 30%.

Antibiotics: City dwellers and children take the most
City dwellers take more antibiotics than people in rural areas; children and the elderly use them more often than middle-aged people; the use of antibiotics decreases as education increases, but only in rich countries: These are three of the more striking trends identified by researchers of the NRW Forschungskolleg ''One Health and Urban Transformation'' at the University of Bonn.

Metals could be the link to new antibiotics
Compounds containing metals could hold the key to the next generation of antibiotics to combat the growing threat of global antibiotic resistance.

Antibiotics from the sea
The team led by Prof. Christian Jogler of Friedrich Schiller University, Jena, has succeeded in cultivating several dozen marine bacteria in the laboratory -- bacteria that had previously been paid little attention.

Antibiotics not necessary for most toothaches, according to new ADA guideline
The American Dental Association (ADA) announced today a new guideline indicating that in most cases, antibiotics are not recommended for toothaches.

Read More: Antibiotics News and Antibiotics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.