Lightning expected to increase by 50 percent with global warming

November 13, 2014

Today's climate models predict a 50 percent increase in lightning strikes across the United States during this century as a result of warming temperatures associated with climate change.

Reporting in the Nov. 14 issue of the journal Science, University of California, Berkeley, climate scientist David Romps and his colleagues look at predictions of precipitation and cloud buoyancy in 11 different climate models and conclude that their combined effect will generate more frequent electrical discharges to the ground.

"With warming, thunderstorms become more explosive," said Romps, an assistant professor of earth and planetary science and a faculty scientist at Lawrence Berkeley National Laboratory. "This has to do with water vapor, which is the fuel for explosive deep convection in the atmosphere. Warming causes there to be more water vapor in the atmosphere, and if you have more fuel lying around, when you get ignition, it can go big time."

More lightning strikes mean more human injuries; estimates of people struck each year range from the hundreds to nearly a thousand, with scores of deaths. But another significant impact of increased lightning strikes would be more wildfires, since half of all fires - and often the hardest to fight - are ignited by lightning, Romps said. More lightning also would likely generate more nitrogen oxides in the atmosphere, which exert a strong control on atmospheric chemistry.

While some studies have shown changes in lightning associated with seasonal or year-to-year variations in temperature, there have been no reliable analyses to indicate what the future may hold. Romps and graduate student Jacob Seeley hypothesized that two atmospheric properties - precipitation and cloud buoyancy - together might be a predictor of lightning, and looked at observations during 2011 to see if there was a correlation.

"Lightning is caused by charge separation within clouds, and to maximize charge separation, you have to loft more water vapor and heavy ice particles into the atmosphere," he said. "We already know that the faster the updrafts, the more lightning, and the more precipitation, the more lightning."

Precipitation - the total amount of water hitting the ground in the form of rain, snow, hail or other forms - is basically a measure of how convective the atmosphere is, he said, and convection generates lightning. The ascent speeds of those convective clouds are determined by a factor called CAPE - convective available potential energy - which is measured by balloon-borne instruments, called radiosondes, released around the U.S. twice a day.

"CAPE is a measure of how potentially explosive the atmosphere is, that is, how buoyant a parcel of air would be if you got it convecting, if you got it to punch through overlying air into the free troposphere," Romps said. "We hypothesized that the product of precipitation and CAPE would predict lightning."

Using U.S. Weather Service data on precipitation, radiosonde measurements of CAPE and lightning- strike counts from the National Lightning Detection Network at the University of Albany, State University of New York (UAlbany), they concluded that 77 percent of the variations in lightning strikes could be predicted from knowing just these two parameters.

'Blown away'

"We were blown away by how incredibly well that worked to predict lightning strikes," he said.

They then looked at 11 different climate models that predict precipitation and CAPE through this century and are archived in the most recent Coupled Model Intercomparison Project (CMIP5). CMIP was established as a resource for climate modelers, providing a standard protocol for studying the output of coupled atmosphere-ocean general circulation models so that these models can be compared and validated.

"With CMIP5, we now have for the first time the CAPE and precipitation data to calculate these time series," Romps said.

On average, the models predicted an 11 percent increase in CAPE in the U.S. per degree Celsius rise in global average temperature by the end of the 21st century. Because the models predict little average precipitation increase nationwide over this period, the product of CAPE and precipitation gives about a 12 percent rise in cloud-to-ground lightning strikes per degree in the contiguous U.S., or a roughly 50 percent increase by 2100 if Earth sees the expected 4-degree Celsius increase (7 degrees Fahrenheit) in temperature. This assumes carbon dioxide emissions keep rising consistent with business as usual.

Exactly why CAPE increases as the climate warms is still an area of active research, Romps said, though it is clear that it has to do with the fundamental physics of water. Warm air typically contains more water vapor than cold air; in fact, the amount of water vapor that air can "hold" increases exponentially with temperature. Since water vapor is the fuel for thunderstorms, lightning rates can depend very sensitively on temperature.

In the future, Romps plans to look at the distribution of lightning-strike increases around the U.S. and also explore what lightning data can tell climatologists about atmospheric convection.
Romps' co-authors are Jacob Seeley, also of the Department of Earth and Planetary Science at UC Berkeley, and David Vollaro and John Molinari of the Department of Atmospheric and Environmental Sciences at UAlbany.

The work was supported by the U.S. Department of Energy's Office of Advanced Scientific Computing Research and Office of Biological and Environmental Research, and the National Science Foundation (Grant No. AGS1132576).

University of California - Berkeley

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to