Lasers could rapidly make materials hotter than the Sun

November 13, 2015

Lasers could heat materials to temperatures hotter than the centre of the Sun in only 20 quadrillionths of a second, according to new research.

Theoretical physicists from Imperial College London have devised an extremely rapid heating mechanism that they believe could heat certain materials to ten million degrees in much less than a million millionth of a second.

The method, proposed here for the first time, could be relevant to new avenues of research in thermonuclear fusion energy, where scientists are seeking to replicate the Sun's ability to produce clean energy.

The heating would be about 100 times faster than rates currently seen in fusion experiments using the world's most energetic laser system at the Lawrence Livermore National Laboratory in California. The race is now on for fellow scientists to put the team's method into practice.

Researchers have been using high-power lasers to heat material as part of the effort to create fusion energy for many years. In this new study, the physicists at Imperial were looking for ways to directly heat up ions -- particles which make up the bulk of matter.

When lasers are used to heat most materials, the energy from the laser first heats up the electrons in the target. These in turn heat up the ions, making the process slower than targeting the ions directly.

The Imperial team discovered that when a high-intensity laser is fired at a certain type of material, it will create an electrostatic shockwave that can heat ions directly. Their discovery is published today in the journal Nature Communications.

"It's a completely unexpected result. One of the problems with fusion research has been getting the energy from the laser in the right place at the right time. This method puts energy straight into the ions," said the paper's lead author, Dr Arthur Turrell.

Normally, laser-induced electrostatic shockwaves push ions ahead of them, causing them to accelerate away from the shockwave but not heat up. However, using sophisticated supercomputer modelling, the team discovered that if a material contains special combinations of ions, they will be accelerated by the shockwave at different speeds. This causes friction, which in turn causes them to rapidly heat. They found that the effect would be strongest in solids with two ion types, such as plastics.

"The two types of ions act like matches and a box; you need both," explained study co-author Dr Mark Sherlock from the Department of Physics at Imperial. "A bunch of matches will never light on their own -- you need the friction caused by striking them against the box."

"That the actual material used as a target mattered so much was a surprise in itself," added study co-author Professor Steven Rose. "In materials with only one ion type, the effect completely disappears."

The heating is so fast in part because the material targeted is so dense. The ions are squeezed together to almost ten times the usual density of a solid material as the electrostatic shockwave passes, causing the frictional effect to be much stronger than it would be in a less-dense material, such as a gas.

The technique, if proven experimentally, could be the fastest heating rate ever demonstrated in a lab for a significant number of particles.

"Faster temperature changes happen when atoms smash together in accelerators like the Large Hadron Collider, but these collisions are between single pairs of particles," said Dr Turrell. "In contrast the proposed technique could be explored at many laser facilities around the world, and would heat material at solid density."

Imperial College London

Related Laser Articles from Brightsurf:

Laser technology: New trick for infrared laser pulses
For a long time, scientists have been looking for simple methods to produce infrared laser pulses.

Sensors get a laser shape up
Laser writing breathes life into high-performance sensing platforms.

Laser-powered nanomotors chart their own course
The University of Tokyo introduced a system of gold nanorods that acts like a tiny light-driven motor, with its direction of motion is determined by the orientation of the motors.

What laser color do you like?
Researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland have developed a microchip technology that can convert invisible near-infrared laser light into any one of a panoply of visible laser colors, including red, orange, yellow and green.

Laser technology: The Turbulence and the Comb
While the light of an ordinary laser only has one single, well-defined wavelength, a so-called ''frequency comb'' consists of different light frequencies, which are precisely arranged at regular distances, much like the teeth of a comb.

A laser for penetrating waves
The 'Landau-level laser' is an exciting concept for an unusual radiation source.

Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.

The first laser radio transmitter
For the first time, researchers at Harvard School of Engineering have used a laser as a radio transmitter and receiver, paving the way for towards ultra-high-speed Wi-Fi and new types of hybrid electronic-photonic devices.

The random anti-laser
Scientists at TU Wien have found a way to build the 'opposite' of a laser -- a device that absorbs a specific light wave perfectly.

Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.

Read More: Laser News and Laser Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to