Nav: Home

Bright and shining molecules for OLEDs and new drugs

November 13, 2017

Chemists from Ural Federal University (UrFU, Ekaterinburg) have suggested a new technique for synthesizing thiophene derivatives and studied their fluorescent properties experimentally as well as theoretically. Many organic compounds containing thiophene rings exhibit a significant pharmacological activity. Thanks to their unusual electronic nature and low aromaticity, thiophenes are an ideal molecule for synthesizing photoactive polymers, liquid crystals, and organic dyes for solar cells. The researchers described their discovery on the pages of the Chemistry - An Asian Journal.

A research group from the UrFU Institute of Chemical Engineering, in collaboration with an Italian scientist (Scuola Normale Superiore, Pisa; present affiliation, Nazarbaev University, Astana, Kazakhstan), has published the results of a joint research, showing a new, convenient, and effective two-step procedure for producing new thiophene derivatives from simple and easy to obtain starting materials. They have determined the features of the mechanism of this reaction using quantum mechanical calculations to compute the reaction thermodynamic parameters, as well as to compare the electronic structure of active centers, to plot the structure of intermediate substances, and to investigate their intramolecular interactions.

The proposed method is promising due to its safe reaction conditions, suggesting that this protocol may provide a valid alternative to previously reported protocols, which are tedious, time consuming, and result in poor yields using dangerous harsh conditions. Moreover, the new procedure can be used to synthetize libraries of new thiophene derivatives, whose structures will include new combinations of substituents, depending on the requirements of specific applications.

The compounds obtained possess important photophysical properties, in particular fluorescence (the emission of light by a substance that has absorbed light or other electromagnetic radiation). Molecules and materials with fluorescent properties are of great interest to the field of organic photonics, when creating luminescent (OLEDs and displays, luminescent probes and labels) and photovoltaic devices (photodetectors, color-sensitized solar cells). State-of-the-art quantum mechanical methods were used to interpret the experimental results and study the characteristics of the ground and excited states of these new compounds. Due to their photophysical properties and sensitivity to the environment, these synthesized compounds may found applications in many areas, especially in biology, because of their structural similarity with biologically active thiophenes.

The article published in the Chemistry - An Asian Journal is the fourth paper published in 2017 by the team of chemists from UrFU and dedicated to new heterocyclic fluorophores. Previously, they developed a procedure for synthesizing 2-aryl-1,2,3-triazoles, as well as discovered and studied their fluorescent properties. In addition, they have proposed a new technique for the synthesis of 4,5-dihydro-1,2,4-triazoles and showed that such qualities as accessibility, synthetic simplicity, stability and high sensitivity to the microenvironment make these compounds a convenient platform for creating new sensors. The editorial staff of the European Journal of Organic Chemistry noted the subsequent article about synthesis and fluorescent properties of di- and trisubstituted thiazoles as very important. In each publication, new and original substances are presented, which also have unusual optical properties in solution, solid crystalline state, or suspension (nanoparticles).

Based on the results obtained, the researchers prepare to proceed to designing, synthesizing and investigating the fluorescent properties of compounds that are promising candidates for practical use in biology or medicine.

"Our work would not be possible without the funding we received under the UrFU development program and the competitiveness enhancement program (UrFU is a participant in the 5-100 Project). In conference on organic chemistry, we met the theoretical physicist Enrico Benassi, who became an important member of our team. In order to measure the fluorescence spectra and determine the optical characteristics of synthesized compounds, we had to travel to other institutes in Russia and even to the Nankai University (China). Concrete and effective results appeared only when our institute has purchased new high quality equipment (a UV spectrophotometer and two Japanese fluorimeters). Thanks to this equipment, our studies have reached the world-level quality and importance of the problems being solved in them, and we have managed to produce publications with high impact factor", - says the lead author of the articles, Dr. Nataliya Belskaya, Doctor of Chemistry.
-end-


Ural Federal University

Related Solar Cells Articles:

Solar cells more efficient thanks to new material standing on edge
Researchers from Lund University in Sweden and from Fudan University in China have successfully designed a new structural organization using the promising solar cell material perovskite.
Printable solar cells just got a little closer
A University of Toronto Engineering innovation could make printing solar cells as easy and inexpensive as printing a newspaper.
A big nano boost for solar cells
Solar cells convert light into electricity. While the sun is one source of light, the burning of natural resources like oil and natural gas can also be harnessed.
Game changer for organic solar cells
Researchers develop a simple processing technique that could cut the cost of organic photovoltaics and wearable electronics.
Physics, photosynthesis and solar cells
A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient.
Throwing new light on printed organic solar cells
Researchers at the University of Surrey have achieved record power conversion efficiencies for large area organic solar cells.
A new way to image solar cells in 3-D
Berkeley Lab scientists have developed a way to use optical microscopy to map thin-film solar cells in 3-D as they absorb photons.
Toward 'greener,' inexpensive solar cells
Solar panels are proliferating across the globe to help reduce the world's dependency on fossil fuels.
A new technique opens up advanced solar cells
Using a novel spectroscopic technique, EPFL scientists have made a much-needed breakthrough in cutting-edge photovoltaics.
OU physicists developing new systems for next generation solar cells
University of Oklahoma physicists are developing novel technologies with the potential to impact utility-scale energy generation, increase global energy capacity and reduce dependence on fossil fuels by producing a new generation of high efficiency solar cells.

Related Solar Cells Reading:

PHYSICS OF SOLAR CELLS, THE (Properties of Semiconductor Materials)
by Jenny Nelson (Author)

Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall series in solid state physical electronics)
by Martin A. Green (Author)

Solar Cells: Materials, Manufacture and Operation
by Tom Markvart (Author), Luis Castaner (Author)

Solar Cells: From Basic to Advanced Systems (MCGRAW HILL SERIES IN ELECTRICAL AND COMPUTER ENGINEERING)
by Chemming Hu (Author), R. M. White (Author)

Practical Photovoltaics: Electricity from Solar Cells, 3rd Edition
by Richard J. Komp (Author), John Perlin (Foreword)

Build A Solar Hydrogen Fuel Cell System
by Phillip Hurley (Author)

Physics of Solar Cells: From Basic Principles to Advanced Concepts
by Peter Würfel (Author)

Solar Cell Device Physics, Second Edition
by Stephen Fonash (Author)

The Physics of Solar Cells: Perovskites, Organics, and Photovoltaic Fundamentals
by Juan Bisquert (Author)

Solar Cell and Renewable Energy Experiments (Cool Science Projects With Technology)
by Ed Sobey (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Why We Hate
From bullying to hate crimes, cruelty is all around us. So what makes us hate? And is it learned or innate? This hour, TED speakers explore the causes and consequences of hate — and how we can fight it. Guests include reformed white nationalist Christian Picciolini, CNN commentator Sally Kohn, podcast host Dylan Marron, and writer Anand Giridharadas.
Now Playing: Science for the People

#482 Body Builders
This week we explore how science and technology can help us walk when we've lost our legs, see when we've gone blind, explore unfriendly environments, and maybe even make our bodies better, stronger, and faster than ever before. We speak to Adam Piore, author of the book "The Body Builders: Inside the Science of the Engineered Human", about the increasingly amazing ways bioengineering is being used to reverse engineer, rebuild, and augment human beings. And we speak with Ken Thomas, spacesuit engineer and author of the book "The Journey to Moonwalking: The People That Enabled Footprints on the Moon" about...