The pros and cons of large ears

November 13, 2017

Researchers at Lund University in Sweden have compared how much energy bats use when flying, depending on whether they have large or small ears.

Large ears increase air resistance, meaning that long-eared bats are forced to expend more energy than species with small ears. On the plus side, large ears generate more lift and provide better hearing.

Good hearing is a prerequisite for bats' ability to echolocate, i.e. sense the echo of the sound waves they emit in order to locate and home in on their prey.

The research results therefore show that large ears have both pros and cons. Christoffer Johansson Westheim, senior lecturer at Lund University, believes that evolution has made a compromise.

"The crux is being able to fly as efficiently as possible while also having optimal echolocation ability. Bats can't be the best at both these things at the same time", he says.

The research findings also support the hypothesis that birds migrate to a greater extent than bats, and over longer distances, because bats' ears create resistance that makes flying more energy-intensive.

"The bats' external ears act as a pair of brakes - something that birds don't have", he says.

Previous research about the effect of ears on bat flight has been based on models. This is therefore the first time that researchers have quantified the effect of the ears when studying bats flying freely in a wind tunnel. The study was conducted by biologists in Lund together with a colleague from Denmark.

The researchers have studied and compared two species of bat, one with large ears and one with small ears. The study involved using high-speed cameras to photograph laser-illuminated smoke particles in the air as the bats fly. By studying the air movements, the researchers then calculated the forces and the energy needed for flying.

Christoffer Johansson Westheim is not surprised by the results, although they have raised questions about what evolution is optimising.

"When we are studying flying animals, we know that it's the most energy-costly form of movement per time unit, and therefore we think it would be important for evolution to minimise energy consumption for the sake of flying. However, what we see here is that other characteristics, such as efficient echolocation, can be just as important in certain circumstances. Consequently, evolution makes a compromise."

Could the bat research help to improve the flying capability of drones?

"If you are going to have things sticking out of the fuselage, you can try to design them so that they generate aerodynamic lift - in much the same way as large bat ears", he says.
-end-
Watch bat flying: https://www.youtube.com/watch?v=Ss9RGpRTsQw

Lund University

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.