Nav: Home

Genetic engineering mechanism visualized

November 13, 2017

One of the techniques used in genetic engineering -- the process of artificially modifying the genome of a living organism -- involves the so-called CRISPR-Cas9 nuclease system. Using this system, a cell's DNA can be cut at a desired site, where genes can be deleted or added. Selection of the site to be cut is done by a 'guide RNA' molecule bound to the Cas9 protein. Now, a team of researchers led by Mikihiro Shibata from Kanazawa University and Osamu Nureki from the University of Tokyo has visualized the dynamics of the CRISPR-Cas9 complex, in particular how it cuts DNA, providing valuable insights into the CRISPR-Cas9-mediated DNA cleavage mechanism.

For their visualization studies, the scientists used high-speed atomic-force microscopy (HS-AFM), a method for imaging surfaces. A surface is probed by moving a tiny cantilever over it; the force experienced by the probe can be converted into a height measure. A scan of the whole surface then results in a height map of the sample. The high-speed experimental set-up of Shibata and colleagues enabled extremely fast, repeated scans -- convertible into movies -- of the biomolecules taking part in the molecular scissoring action.

First, the scientists compared Cas9 without and with RNA attached (Cas9-RNA). They found that the former was able to flexibly adopt various conformations, while the latter has a fixed, two-lobe structure, highlighting the conformational-stabilization ability of the guide RNA. Then, Shibata and colleagues looked at how the stabilized Cas9-RNA complex targets DNA. They confirmed that it binds to a pre-selected protospacer adjacent motif (PAM) site in the DNA. A PAM is a short nucleotide sequence located next to the DNA's target site, which is complementary to the guide RNA.

The research team's high-speed movies further revealed that targeting ('DNA interrogation') is achieved through 3D diffusion of the Cas9-RNA complex. Finally, the researchers managed to visualize the dynamics of the cleavage process itself: they observed how the region of 'molecular scissors' undergoes conformational fluctuations after Cas9-RNA locally unwinds the double-stranded DNA (Figure 2).

The work of Shibata advances our understanding of the CRISPR-Cas9 genome-editing mechanism. In the words of the researchers: "... this study provides unprecedented details about the functional dynamics of CRISPR-Cas9, and highlights the potential of HS-AFM to elucidate the action mechanisms of RNA-guided effector nucleases from distinct CRISPR-Cas systems."

[Background]

CRISPR-Cas9


CRISPR, short for "clustered regularly interspaced short palindromic repeats", refers to a set of bacterial DNA sequences containing fragments of the DNA of viruses having earlier attacked the bacteria. These fragments are used by the bacteria to prevent further attacks by the same viruses. "Cas" refers to CRISPR-associated genes; "Cas9" is a CRISPR-associated protein with two nuclease domains (A nuclease is an enzyme capable of cleaving nucleic acids, organic molecules present in DNA and RNA).

In recent years, a genetic-engineering technique where a CRISPR-Cas9 complex acts as 'molecular scissors' has been developed; the Cas9 nuclease binds to a guide RNA molecule that contains information about the DNA site to target. Using high-speed atomic force microscopy, Mikihiro Shibata from Kanazawa University and colleagues have now studied the dynamics of the CRISPR-Cas9 complex in great detail.

Atomic force microscopy

Atomic force microscopy (AFM) is an imaging technique in which the image is formed by scanning a surface with a very small tip. Horizontal scanning motion of the tip is controlled via piezoelectric elements, while vertical motion is converted into a height profile, resulting in a height distribution of the sample's surface. As the technique does not involve lenses, its resolution is not restricted by the so-called diffraction limit. In a high-speed setup, AFM can be used to produce movies of a sample's evolution in real time. High-speed AFM has been used successfully to study protein dynamics, for example myosin V walking on an actin filament, the photo-induced conformational change of bacteriorhodopsin, and the degradation of cellulose. Shibata and colleagues have now applied the high-speed AFM technique for visualizing the dynamics of DNA cleavage by CRISPR-Cas9.
-end-


Kanazawa University

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

DNA: The Story of the Genetic Revolution
by James D. Watson (Author), Andrew Berry (Author), Kevin Davies (Author)

The definitive insider's history of the genetic revolution--significantly updated to reflect the discoveries of the last decade.

James D. Watson, the Nobel laureate whose pioneering work helped unlock the mystery of DNA's structure, charts the greatest scientific journey of our time, from the discovery of the double helix to today's controversies to what the future may hold. Updated to include new findings in gene editing, epigenetics, agricultural chemistry, as well as two entirely new chapters on personal genomics and cancer research. This is the most comprehensive and... View Details


The DNA Restart: Unlock Your Personal Genetic Code to Eat for Your Genes, Lose Weight, and Reverse Aging
by Dr. Sharon Moalem (Author), Nobu Matsuhisa (Foreword)

The DNA Restart turns traditional dietary advice on its head with groundbreaking research that demonstrates that we all require different diets based on our genes.

In The DNA Restart, Sharon Moalem, MD, PhD, provides a revolutionary step-by-step guide to the diet and lifestyle perfect for your individual genetic makeup. A physician, scientist, neurogeneticist, and New York Times bestselling author, Dr. Moalem has spent the last two decades researching and formulating how to reset your own genetic code using five essential pillars: eat for your genes; reverse... View Details


The Family Tree Guide to DNA Testing and Genetic Genealogy
by Blaine T. Bettinger (Author)

Unlock the secrets in your DNA!

Discover the answers to your family history mysteries using the most-cutting edge tool available. This plain-English guide is a one-stop resource for how to use DNA testing for genealogy. Inside, you'll find guidance on what DNA tests are available, plus the methodologies and pros and cons of the three major testing companies and advice on choosing the right test to answer your specific genealogy questions. And once you've taken a DNA test, this guide will demystify the often-overwhelming subject and explain how to interpret DNA test results,... View Details


Move Your DNA: Restore Your Health Through Natural Movement Expanded Edition
by Katy Bowman (Author)

Humorous, fascinating, and science based, the bestselling first edition of Move Your DNA has been updated and expanded to include a comprehensive three-level exercise program.

In layperson-friendly terms Move Your DNA addresses the vast quantities of disease we are suffering from, identifying our lack of movement as the primary cause. Readers can use the corrective exercises and lifestyle changes Katy Bowman has created to help each of us transition to healthy, naturally moving bodies. Move Your DNA explains the science behind our need for natural movement right down... View Details


DNA Science: A First Course, Second Edition
by David Micklos (Author), Greg Freyer (Author)

This is the second edition of a highly successful textbook (over 50,000 copies sold) in which a highly illustrated, narrative text is combined with easytouse thoroughly reliable laboratory protocols. It contains a fully uptodate collection of 12 rigorously tested and reliable lab experiments in molecular biology, developed at the internationally renowned Dolan DNA Learning Center of Cold Spring Harbor Laboratory, which culminate in the construction and cloning of a recombinant DNA molecule. Proven through more than 10 years of teaching at research and nonresearch colleges and universities,... View Details


Rosalind Franklin: The Dark Lady of DNA
by Brenda Maddox (Author)

In 1962, Maurice Wilkins, Francis Crick, and James Watson received the Nobel Prize, but it was Rosalind Franklin's data and photographs of DNA that led to their discovery.

Brenda Maddox tells a powerful story of a remarkably single-minded, forthright, and tempestuous young woman who, at the age of fifteen, decided she was going to be a scientist, but who was airbrushed out of the greatest scientific discovery of the twentieth century.

View Details


The Innovator's DNA: Mastering the Five Skills of Disruptive Innovators
by Jeff Dyer (Author), Hal Gregersen (Author), Clayton M. Christensen (Author)

A new classic, cited by leaders and media around the globe as a highly recommended read for anyone interested in innovation.

In The Innovator’s DNA, authors Jeffrey Dyer, Hal Gregersen, and bestselling author Clayton Christensen (The Innovator’s Dilemma, The Innovator’s Solution, How Will You Measure Your Life?) build on what we know about disruptive innovation to show how individuals can develop the skills necessary to move progressively from idea to impact.

By identifying behaviors of the world’s best innovators—from leaders at Amazon and... View Details


The DNA of Relationships
by Gary Smalley (Author)

“Life is relationships; the rest is just details.” We are designed for relationships, yet they often bring us pain. In this paradigm-shifting book, Dr. Gary Smalley unravels the DNA of relationships: We are made for three great relationships―with God, others, and ourselves―and all relationships involve choice. Gary exposes a destructive relationship dance that characterizes nearly every relationship conflict, and he offers five new dance steps that will revolutionize relationships. The DNA of Relationships, the cornerstone book in Gary Smalley's relationship campaign, will help you... View Details


DNA of the Gods: The Anunnaki Creation of Eve and the Alien Battle for Humanity
by Chris H. Hardy Ph.D. (Author)

An in-depth study of humanity’s Anunnaki origins and the Anunnaki battle for an intelligent versus enslaved humanity

• Explains the genetic engineering of humanity by an Anunnaki scientist Ninmah

• Shows how the concepts of sin and the inferiority of women arose from Enlil’s will to keep humanity underdeveloped, clashing with Enki’s and Ninmah’s plan to make us equal in intelligence

• Reveals how humanity’s long history of conflict was shaped by the battle between Enki and his brother Enlil

Further developing the revolutionary work of... View Details


The Four: The Hidden DNA of Amazon, Apple, Facebook, and Google
by Scott Galloway (Author)

NEW YORK TIMES BESTSELLER
USA TODAY 
BESTSELLER


Amazon, Apple, Facebook, and Google are the four most influential companies on the planet. Just about everyone thinks they know how they got there. Just about everyone is wrong. 

For all that’s been written about the Four over the last two decades, no one has captured their power and staggering success as insightfully as Scott Galloway.

Instead of buying the myths these compa­nies broadcast, Galloway asks fundamental questions. How did the Four infiltrate our lives so completely that... View Details

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Going Undercover
Are deception and secrecy categorically wrong? Or can they be a necessary means to an end? This hour, TED speakers share stories of going undercover to explore unknown territory, and find the truth. Guests include poet and activist Theo E.J. Wilson, journalist Jamie Bartlett, counter-terrorism expert Mubin Shaikh, and educator Shabana Basij-Rasikh.
Now Playing: Science for the People

#452 Face Recognition and Identity
This week we deep dive into the science of how we recognize faces and why some of us are better -- or worse -- at this than others. We talk with Brad Duchaine, Professor of Psychology at Dartmouth College, about both super recognizers and face blindness. And we speak with Matteo Martini, Psychology Lecturer at the University of East London, about a study looking at twins who have difficulty telling which one of them a photo was of. Charity Links: Union of Concerned Scientists Evidence For Democracy Sense About Science American Association for the Advancement of Science Association for Women...