Uncovering a reversible master switch for development

November 13, 2017

In a paper published in Genes & Development, BWH principal investigator Mitzi Kuroda, PhD, and her team identified a reversible "master switch" on most developmental genes. The team unearthed this biological insight through studies in the fruit fly --a powerful model organism for studying how human genes are organized and function.

The human genome contains billions of DNA "letters," that can only be read as words, phrases and sentences with the help of proteins that, metaphorically, mark the DNA with punctuation. Together, the DNA-protein combinations form chromatin which provides the essential annotation for gene transcription. However, it is still not understood how the annotation and readout of a single genome differs across cell types. The differences are crucial for normal development and are mutated in cancer. Currently, it is thought that different combinations of proteins act at each of the thousands of genes, and deciphering the numerous complex patterns is a difficult task.

In Kang et al., the Kuroda lab identifies a reversible "master switch" that sits on potentially all developmental genes in a model organism, the fruit fly. Their bivalent master switch model provides a conceptually simple explanation for how each developmental step is made along the path to different cell types, dependent on cell type-specific proteins, but acting through this common module.

In this case the fly model is likely to extend and synergize with seminal work by Harvard Medical School professor Brad Bernstein, MD, PhD, and colleagues on the regulation of key developmental genes in mammalian embryos.
-end-
This work was supported by NIH grant GM101958 to M.I.K. K.A.M. was supported by the Joint Training Program in Molecules, Cells, and Organisms (T32GM007598 from the NIH). B.M.Z. was supported by a fellowship from the Jane Coffin Childs Memorial Fund.

Paper Cited: Kang, H et al. "Bivalent complexes of PRC1 with orthologs of BRD4 and MOZ/MORF target developmental genes in Drosophila" Genes & Development DOI 10.1101/gad.305987.117

Brigham and Women's Hospital

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.