Nav: Home

Why head and face pain causes more suffering

November 13, 2017

DURHAM, N.C. -- Hate headaches? The distress you feel is not all in your -- well, head. People consistently rate pain of the head, face, eyeballs, ears and teeth as more disruptive, and more emotionally draining, than pain elsewhere in the body.

Duke University scientists have discovered how the brain's wiring makes us suffer more from head and face pain. The answer may lie not just in what is reported to us by the five senses, but in how that sensation makes us feel emotionally.

The team found that sensory neurons that serve the head and face are wired directly into one of the brain's principal emotional signaling hubs. Sensory neurons elsewhere in the body are also connected to this hub, but only indirectly.

The results may pave the way toward more effective treatments for pain mediated by the craniofacial nerve, such as chronic headaches and neuropathic face pain.

"Usually doctors focus on treating the sensation of pain, but this shows the we really need to treat the emotional aspects of pain as well," said Fan Wang, a professor of neurobiology and cell biology at Duke, and senior author of the study. The results appear online Nov. 13 in Nature Neuroscience.

Pain signals from the head versus those from the body are carried to the brain through two different groups of sensory neurons, and it is possible that neurons from the head are simply more sensitive to pain than neurons from the body.

But differences in sensitivity would not explain the greater fear and emotional suffering that patients experience in response to head-face pain than body pain, Wang said.

Personal accounts of greater fear and suffering are backed up by functional Magnetic Resonance Imaging (fMRI), which shows greater activity in the amygdala -- a region of the brain involved in emotional experiences -- in response to head pain than in response to body pain.

"There has been this observation in human studies that pain in the head and face seems to activate the emotional system more extensively," Wang said. "But the underlying mechanisms remained unclear."

To examine the neural circuitry underlying the two types of pain, Wang and her team tracked brain activity in mice after irritating either a paw or the face. They found that irritating the face led to higher activity in the brain's parabrachial nucleus (PBL), a region that is directly wired into the brain's instinctive and emotional centers.

Then they used methods based on a novel technology recently pioneered by Wang's group, called CANE, to pinpoint the sources of neurons that caused this elevated PBL activity.

"It was a eureka moment because the body neurons only have this indirect pathway to the PBL, whereas the head and face neurons, in addition to this indirect pathway, also have a direct input," Wang said. "This could explain why you have stronger activation in the amygdala and the brain's emotional centers from head and face pain."

Further experiments showed that activating this pathway prompted face pain, while silencing the pathway reduced it.

"We have the first biological explanation for why this type of pain can be so much more emotionally taxing than others," said Wolfgang Liedtke, a professor of neurology at Duke University Medical Center and a co-author on Wang's paper, who is also treating patients with head- and face-pain. "This will open the door toward not only a more profound understanding of chronic head and face pain, but also toward translating this insight into treatments that will benefit people."

Chronic head-face pain such cluster headaches and trigeminal neuralgia can become so severe that patients seek surgical solutions, including severing the known neural pathways that carry pain signals from the head and face to the hindbrain. But a substantial number of patients continue to suffer, even after these invasive measures.

"Some of the most debilitating forms of pain occur in the head regions, such as migraine," said Qiufu Ma, a professor of neurobiology at Harvard Medical School, who was not involved in the study. "The discovery of this direct pain pathway might provide an explanation why facial pain is more severe and more unpleasant."

Liedtke said targeting the neural pathway identified here can be a new approach toward developing innovative treatments for this devastating head and face pain.
This research was supported by grants from the National Institutes of Health (DP1MH103908, F31 DE025197-03, K12DE022793). Dr Liedtke is also supported by the Facial Pain Research Foundation (Gainesville FL).

CITATION: "A Craniofacial-Specific Monosynaptic Circuit Enables Heightened Affective Pain," Erica Rodriguez, Katsuyasu Sakurai, Jennie Xu, Yong Chen, Koji Toda, Shengli Zhao, Bao-Xia Han, David Ryu, Henry Yin, Wolfgang Liedtke and Fan Wang. Nature Neuroscience, Nov. 13, 2017. DOI: 10.1038/s41593-017-0012-1

Duke University

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

The Fourth Edition of The Neuron provides a comprehensive first course in the cell and molecular biology of nerve cells. The book begins with properties of the many newly discovered ion channels that have emerged through mapping of the genome. These channels shape the way a single neuron generates varied patterns of electrical activity. Covered next are the molecular mechanisms that convert electrical activity into the secretion of neurotransmitter hormones at synaptic junctions between neurons. The following section examines the biochemical pathways that are linked to the action of... View Details

The 7 Secrets of Neuron Leadership: What Top Military Commanders, Neuroscientists, and the Ancient Greeks Teach Us about Inspiring Teams
by W. Craig Reed (Author), Gordon R. England (Foreword)

Leadership techniques backed by the world's most effective teams

The 7 Secrets of Neuron Leadership offers a diverse collection of wisdom and practical knowledge to help you build and lead your most effective team yet. Written by a former U.S. Navy diver, this book draws from the author's experiences and beyond to reveal key truths about the nature of teamwork, and expose the core of effective team leadership. You'll go back to ancient Greece to discover the nine personality types and the seven types of love that form the foundation of human interaction, and learn how... View Details

From Photon to Neuron: Light, Imaging, Vision
by Philip Nelson (Author)

A richly illustrated undergraduate textbook on the physics and biology of light

Students in the physical and life sciences, and in engineering, need to know about the physics and biology of light. Recently, it has become increasingly clear that an understanding of the quantum nature of light is essential, both for the latest imaging technologies and to advance our knowledge of fundamental life processes, such as photosynthesis and human vision. From Photon to Neuron provides undergraduates with an accessible introduction to the physics of light and offers a unified view... View Details

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

The third edition of The Neuron provides a comprehensive first course in the cell and molecular biology of nerve cells. The first part of the book covers the properties of the many ion channels that shape the way a single neuron generates varied patterns of electrical activity, as well as the molecular mechanisms that convert electrical activity into the secretion of neurotransmitter hormones at synaptic junctions between neurons. The second part covers the biochemical pathways that are linked to the action of neurotransmitters and can alter the cellular properties of neurons or... View Details

From Neurons to Neighborhoods : The Science of Early Childhood Development
by Committee on Integrating the Science of Early Childhood Development (Author), Youth, and Families Board on Children (Author), National Research Council (Author), Committee on Integrating the Science of Early Childhood Development (Author), Jack P. Shonkoff (Editor), Deborah A. Phillips (Editor)

How we raise young children is one of today's most highly personalized and sharply politicized issues, in part because each of us can claim some level of "expertise." The debate has intensified as discoveries about our development-in the womb and in the first months and years-have reached the popular media.

How can we use our burgeoning knowledge to assure the well-being of all young children, for their own sake as well as for the sake of our nation? Drawing from new findings, this book presents important conclusions about nature-versus-nurture, the impact of being born into a... View Details

From Neuron to Brain
by John G. Nicholls (Author), A. Robert Martin (Author), David A. Brown (Author), Mathew E. Diamond (Author), David A. Weisblat (Author), Paul A. Fuchs (Author)

From Neuron to Brain, Fifth Edition, provides a readable, up-to-date book for use in undergraduate, graduate, and medical school courses in neuroscience. As in previous editions, the emphasis is on experiments made by electrical recordings, molecular and cellular biological techniques, and behavioral studies on the nervous system, from simple reflexes to cognitive functions. Lines of research are followed from the inception of an idea to new findings being made in laboratories and clinics today.

A major change is that this edition begins with the anatomy and physiology of the... View Details

From Neuron to Brain: A Cellular and Molecular Approach to the Function of the Nervous System, Fourth Edition
by John G. Nicholls (Author), A. Robert Martin (Author), Bruce G. Wallace (Author), Paul A. Fuchs (Author)

In the 25 years since From Neuron to Brain was first published, the authors' aim has remained constant—to describe how nerve cells go about their business of transmitting signals, how the signals are put together, and how, out of this integration, higher functions emerge. The new Fourth Edition, while maintaining this focus, has been completely reformatted and updated.

The emphasis, as before, is on experiments, and on the way they are carried out. Using a narrative approach, the authors follow a line from the original inception of a new idea to an account of research being done today.... View Details

I of the Vortex: From Neurons to Self
by Rodolfo R. Llinas (Author)

A highly original theory of how the mind-brain works, based on the author's study of single neuronal cells.

In I of the Vortex, Rodolfo Llinas, a founding father of modern brain science, presents an original view of the evolution and nature of mind. According to Llinas, the "mindness state" evolved to allow predictive interactions between mobile creatures and their environment. He illustrates the early evolution of mind through a primitive animal called the "sea squirt." The mobile larval form has a brainlike ganglion that receives sensory information about the... View Details

The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition
by Gregory Hickok (Author)

An essential reconsideration of one of the most far-reaching theories in modern neuroscience and psychology.

In 1992, a group of neuroscientists from Parma, Italy, reported a new class of brain cells discovered in the motor cortex of the macaque monkey. These cells, later dubbed mirror neurons, responded equally well during the monkey’s own motor actions, such as grabbing an object, and while the monkey watched someone else perform similar motor actions. Researchers speculated that the neurons allowed the monkey to understand others by simulating their actions in its... View Details

From Neurons to Neighborhoods : The Science of Early Childhood Development
by National Research Council Institute of Medicine (Author)

Book looks new. View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Consequences Of Racism
What does it mean to be judged before you walk through the door? What are the consequences? This week, TED speakers delve into the ways racism impacts our lives, from education, to health, to safety. Guests include poet and writer Clint Smith, writer and activist Miriam Zoila Pérez, educator Dena Simmons, and former prosecutor Adam Foss.
Now Playing: Science for the People

#465 How The Nose Knows
We've all got a nose but how does it work? Why do we like some smells and not others, and why can we all agree that some smells are good and some smells are bad, while others are dependant on personal or cultural preferences? We speak with Asifa Majid, Professor of Language, Communication and Cultural Cognition at Radboud University, about the intersection of culture, language, and smell. And we level up on our olfactory neuroscience with University of Pennsylvania Professor Jay Gottfried.