Nav: Home

The first effective therapy against glioblastoma by attacking telomeres

November 13, 2017

The Telomere and Telomerase Group at the Spanish National Cancer Research Centre (CNIO) has shown that it is possible to block the growth of human and murine glioblastoma in mouse models by blocking the TRF1 protein; an essential component of the telomere-protective complex known as shelterin. The study, published in Cancer Cell, describes a new and promising way to combat this type of brain tumour, considered one of the most lethal and difficult to treat, by attacking its ability to regenerate and divide immortally.

The average life expectancy of patients with glioblastoma is about 14 months. This brain tumour (which is the most common) can evade and overcome the limited therapeutic options that exist today to treat it. It is particularly known for its ability to regenerate, because, the tumour contains a subset of cells with characteristics that are similar to stem cells, called glioblastoma stem cells (GSCs), one of these cells is capable of reproducing the entire tumour.

These GSCs cells are the cornerstone of glioblastoma and one of its identifying features. One of their characteristics is that they have very high levels of the telomeric protein TRF1, which in addition to being essential for protecting telomeres, is required to maintain the capacity of these cells to regenerate the tumour.

"We know that TRF1 is expressed particularly in stem cells, so we thought it would be interesting to see what would happen in tumours that had a strong tumour stem cell nature if we blocked TRF1," explains Maria A. Blasco, head of the Telomeres and Telomerase Group and senior author of the paper. Glioblastoma is clearly a type of tumour that could benefit from blocking TRF1 owing to the ability of its glioma stem cells to regenerate the tumours after current treatments.

BLOCKING TRF1 REDUCES TUMOUR GROWTH

"The first thing we saw was that TRF1 is highly overexpressed in both mouse and human glioblastomas, which indicated that by blocking it we could perhaps impair its growth," says Leire Bejarano, a member of Blasco's group and first author of the paper.

Consequently, Blasco, Bejarano and colleagues started working with mouse models. They removed TRF1 during the initiation of the tumour, as well as blocked it once the glioblastomas had already formed. "Both strategies - said Bejarano - led to a significant increase in the survival rate of the mice with glioblastomas." In the first case, the increase in survival was of 80% and in the case of already-existing tumours the increase in survival was of 30%.

By studying the mechanisms by which TRF1 inhibition limited tumour growth, they found that inhibiting TRF1 caused a reduction in the proliferation and in the stem properties of glioma stem cells. This was in turn triggered by an increase in DNA damage at telomeres, which resulted from the destruction of glioblastoma telomeres. In the end, they prevented the tumour cells from continuing to multiply.

After the success in the mouse models, they began to work with human tumour cells. This required grafting glioblastoma stem cells derived from human patients into mice and treating them with a series of compounds developed at CNIO that inhibit TRF1 and which mechanism of action has been described recently by the same CNIO group. When compared with the animals treated with TRF1 inhibitors with those treated with a placebo, those treated with the TRF1 inhibitor displayed a reduction in the growth and size of the tumours, accompanied by an 80% decrease in tumour TRF1 levels and an increase in the survival rate.

A NEW THERAPEUTIC WINDOW

In addition to the anti-tumoural properties observed, blocking TRF1 appears to be safe because did not affect the olfactory and neuromuscular functions, nor the memory, of the mice. This strengthens the idea that we now have a new therapeutic window to inhibit TRF1 in this type of brain tumour.

"It has a major therapeutic effect on glioblastoma," says Blasco. "We see that inhibiting TRF1 is an effective strategy for treating glioblastoma both by itself and in combination with current radiation and temozolomide therapies," explained the authors, who also collaborated with the Seve-Ballesteros Foundation Brain Tumour Group at CNIO, headed by Massimo Squatrito, the CNIO drug dicovery Experimental Therapeutics Programme, directed by Joaquin Pastor, and the CNIO Confocal Microscopy Unit, led by Diego Megías.

The next step - which they are already working on -, is to verify the effectiveness of the TRF1 inhibitors developed at CNIO in combination with other drugs that are already being used in the clinic.
-end-
[VIDEO AVAILABLE UNDER REQUEST]

Centro Nacional de Investigaciones Oncológicas (CNIO)

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Stem Cell Therapy: A Rising Tide: How Stem Cells Are Disrupting Medicine and Transforming Lives
by Neil H Riordan (Author)

Stem Cells: Promise And Reality
by Lygia V Pereira (Author)

Stem Cells For Dummies
by Lawrence S.B. Goldstein (Author), Meg Schneider (Author)

Stem Cells: An Insider's Guide
by Paul Knoepfler (Author)

Stem Cell Revolution: Discover 26 Disruptive Technological Advances to Stem Cell Activation
by Joseph Christiano (Author)

The Stem Cell Revolution
by Mark Berman MD (Author), Elliot Lander MD (Contributor)

A Buyer's Guide to Stem Cell Therapies: Safely Choose the Right Regenerative Treatment for You

Stem Cells: A Very Short Introduction
by Jonathan Slack (Author)

Stem Cells: A Short Course
by Rob Burgess (Author)

Stem Cells Are Everywhere
by Irv Weissman MD (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Why We Hate
From bullying to hate crimes, cruelty is all around us. So what makes us hate? And is it learned or innate? This hour, TED speakers explore the causes and consequences of hate — and how we can fight it. Guests include reformed white nationalist Christian Picciolini, CNN commentator Sally Kohn, podcast host Dylan Marron, and writer Anand Giridharadas.
Now Playing: Science for the People

#482 Body Builders
This week we explore how science and technology can help us walk when we've lost our legs, see when we've gone blind, explore unfriendly environments, and maybe even make our bodies better, stronger, and faster than ever before. We speak to Adam Piore, author of the book "The Body Builders: Inside the Science of the Engineered Human", about the increasingly amazing ways bioengineering is being used to reverse engineer, rebuild, and augment human beings. And we speak with Ken Thomas, spacesuit engineer and author of the book "The Journey to Moonwalking: The People That Enabled Footprints on the Moon" about...