Nav: Home

Neural nets supplant marker genes in analyzing single cell RNA sequencing

November 13, 2018

PITTSBURGH--Computer scientists at Carnegie Mellon University say neural networks and supervised machine learning techniques can efficiently characterize cells that have been studied using single cell RNA-sequencing (scRNA-seq). This finding could help researchers identify new cell subtypes and differentiate between healthy and diseased cells.

Rather than rely on marker genes, which are not available for all cell types, this new automated method analyzes all of the scRNA-seq data to select just those parameters that can differentiate one cell from another. This enables the analysis of all cell types and provides a method for comparative analysis of those cells.

Researchers from CMU's Computational Biology Department explain their method today in the online journal Nature Communications. They also describe a web server called scQuery that makes the method usable by all researchers.

Over the past five years, single cell sequencing has become a major tool for cell researchers. In the past, researchers could only obtain DNA or RNA sequence information by processing batches of cells, providing results that only reflected average values of the cells. Analyzing cells one at a time, by contrast, enables researchers to identify subtypes of cells, or to see how a healthy cell differs from a diseased cell, or how a young cell differs from an aged cell.

This type of sequencing will support the National Institutes of Health's new Human BioMolecular Atlas Program (HuBMAP), which is building a 3D map of the human body that shows how tissues differ on a cellular level. Ziv Bar-Joseph, professor of computational biology and machine learning and a co-author of today's paper, leads a CMU-based center contributing computational tools to that project.

"With each experiment yielding hundreds of thousands of data points, this is becoming a Big Data problem," said Amir Alavi, a Ph.D. student in computational biology who was co-lead author of the paper with post-doctoral researcher Matthew Ruffalo. "Traditional analysis methods are insufficient for such large scales."

Alavi, Ruffalo and their colleagues developed an automated pipeline that attempts to download all public scRNA-seq data available for mice -- identifying the genes and proteins expressed in each cell -- from the largest data repositories, including the NIH's Gene Expression Omnibus (GEO). The cells were then labeled by type and processed via a neural network, a computer system modeled on the human brain. By comparing all of the cells with each other, the neural net identified the parameters that make each cell distinct.

The researchers tested this model using scRNA-seq data from a mouse study of a disease similar to Alzheimer's. As would be expected, the analysis showed similar levels of brain cells in both healthy and diseased cells, while the diseased cells included substantially more immune cells, such as macrophages, generated in response to the disease.

The researchers used their pipeline and methods to create scQuery, a web server that can speed comparative analysis of new scRNA-seq data. Once a researcher submits a single cell experiment to the server, the group's neural networks and matching methods can quickly identify related cell subtypes and identify earlier studies of similar cells.
-end-
In addition to Ruffalo, Alavi and Bar-Joseph, authors of the research paper include Aiyappa Parvangada and Zhilin Huang, both graduate students in computational biology. The National Institutes of Health, the National Science Foundation, the Pennsylvania Department of Health and the James S. McDonnell Foundation supported this work.

Carnegie Mellon University

Related Genes Articles:

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.
Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.
New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.
Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.
How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.
Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.
The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.
Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.
New genes on 'deteriorating' Y chromosome
Decoding Y chromosomes is difficult even with latest sequencing technologies.
Newly revealed autism-related genes include genes involved in cancer
Researchers in Italy have applied a computational technique that accounts for how genes interact, to find new networks of related genes that may be involved in autism spectrum disorder.
More Genes News and Genes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.