Nav: Home

Purple bacteria 'batteries' turn sewage into clean energy

November 13, 2018

You've flushed something valuable down the toilet today.

Organic compounds in household sewage and industrial wastewater are a rich potential source of energy, bioplastics and even proteins for animal feed - but with no efficient extraction method, treatment plants discard them as contaminants. Now researchers have found an environmentally-friendly and cost-effective solution.

Published in Frontiers in Energy Research, their study is the first to show that purple phototrophic bacteria - which can store energy from light - when supplied with an electric current can recover near to 100% of carbon from any type of organic waste, while generating hydrogen gas for electricity production.

"One of the most important problems of current wastewater treatment plants is high carbon emissions," says co-author Dr Daniel Puyol of King Juan Carlos University, Spain. "Our light-based biorefinery process could provide a means to harvest green energy from wastewater, with zero carbon footprint."

Purple photosynthetic bacteria

When it comes to photosynthesis, green hogs the limelight. But as chlorophyll retreats from autumn foliage, it leaves behind its yellow, orange and red cousins. In fact, photosynthetic pigments come in all sorts of colors - and all sorts of organisms.

Cue purple phototrophic bacteria. They capture energy from sunlight using a variety of pigments, which turn them shades of orange, red or brown - as well as purple. But it is the versatility of their metabolism, not their color, which makes them so interesting to scientists.

"Purple phototrophic bacteria make an ideal tool for resource recovery from organic waste, thanks to their highly diverse metabolism," explains Puyol.

The bacteria can use organic molecules and nitrogen gas - instead of CO2 and H2O - to provide carbon, electrons and nitrogen for photosynthesis. This means that they grow faster than alternative phototrophic bacteria and algae, and can generate hydrogen gas, proteins or a type of biodegradable polyester as byproducts of metabolism.

Tuning metabolic output with electricity

Which metabolic product predominates depends on the bacteria's environmental conditions - like light intensity, temperature, and the types of organics and nutrients available.

"Our group manipulates these conditions to tune the metabolism of purple bacteria to different applications, depending on the organic waste source and market requirements," says co-author Professor Abraham Esteve-Núñez of University of Alcalá, Spain.

"But what is unique about our approach is the use of an external electric current to optimize the productive output of purple bacteria."

This concept, known as a "bioelectrochemical system", works because the diverse metabolic pathways in purple bacteria are connected by a common currency: electrons. For example, a supply of electrons is required for capturing light energy, while turning nitrogen into ammonia releases excess electrons, which must be dissipated. By optimizing electron flow within the bacteria, an electric current - provided via positive and negative electrodes, as in a battery - can delimit these processes and maximize the rate of synthesis.

Maximum biofuel, minimum carbon footprint

In their latest study, the group analyzed the optimum conditions for maximizing hydrogen production by a mixture of purple phototrophic bacteria species. They also tested the effect of a negative current - that is, electrons supplied by metal electrodes in the growth medium - on the metabolic behavior of the bacteria.

Their first key finding was that the nutrient blend that fed the highest rate of hydrogen production also minimized the production of CO2.

"This demonstrates that purple bacteria can be used to recover valuable biofuel from organics typically found in wastewater - malic acid and sodium glutamate - with a low carbon footprint," reports Esteve-Núñez.

Even more striking were the results using electrodes, which demonstrated for the first time that purple bacteria are capable of using electrons from a negative electrode or "cathode" to capture CO2 via photosynthesis.

"Recordings from our bioelectrochemical system showed a clear interaction between the purple bacteria and the electrodes: negative polarization of the electrode caused a detectable consumption of electrons, associated with a reduction in carbon dioxide production.

"This indicates that the purple bacteria were using electrons from the cathode to capture more carbon from organic compounds via photosynthesis, so less is released as CO2."

Towards bioelectrochemical systems for hydrogen production

According to the authors, this was the first reported use of mixed cultures of purple bacteria in a bioelectrochemical system - and the first demonstration of any phototroph shifting metabolism due to interaction with a cathode.

Capturing excess CO2 produced by purple bacteria could be useful not only for reducing carbon emissions, but also for refining biogas from organic waste for use as fuel.

However, Puyol admits that the group's true goal lies further ahead.

"One of the original aims of the study was to increase biohydrogen production by donating electrons from the cathode to purple bacteria metabolism. However, it seems that the PPB bacteria prefer to use these electrons for fixing CO2 instead of creating H2.

"We recently obtained funding to pursue this aim with further research, and will work on this for the following years. Stay tuned for more metabolic tuning."
-end-
Please include a link to the original research article in your reporting:

https://www.frontiersin.org/articles/10.3389/fenrg.2018.00107/full

The research is part of a special article collection on the use of microbes for CO2 capture and biofuel production:

https://www.frontiersin.org/research-topics/6787/microbial-synthesis-gas-fermentation-and-bioelectroconversion-of-co2-and-other-gaseous-streams

Frontiers is an award-winning Open Science platform and leading Open Access scholarly publisher. Our mission is to make research results openly available to the world, thereby accelerating scientific and technological innovation, societal progress and economic growth. We empower scientists with innovative Open Science solutions that radically improve how science is published, evaluated and disseminated to researchers, innovators and the public. Access to research results and data is open, free and customized through Internet Technology, thereby enabling rapid solutions to the critical challenges we face as humanity. For more information, visit http://www.frontiersin.org and follow @Frontiersin on Twitter.

Frontiers

Related Bacteria Articles:

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.